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Motivation
» Effect of motivational message on level of physical activities
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> Seems to be easy: Run RCTs?
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Interference

» An individual's outcome could depend on other individuals' outcomes.

Physical Activities

| should go running
as well!

Social media component

Friend A went running!
Friend B went running!

Fitness a|
PP Masa ran a marathon!
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» An additional time axis.

Introduction

Fitness app

Dynamic Nature

Physical Activities

Dynamic nature

| went running
yesterday. | should do the
same thing today!



Micro-Randomized Trials

» The micro-randomized trial (MRT) is an experimental design that is often used to help
evaluate and optimize dynamic interventions.
» We focus on Bernoulli treatments.
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Problem Setup

» There are n subjects of interests indexed by i =1,...,n.

» Assume that there is an undirected graph with indices corresponding to the n subject. We
call the undirected graph the interference network or the interference graph. We use {Ej;}
to denote the edge set of the graph.

> Let N; = {j : E; = 1} be the set of neighbors of subject i.
Let Y € {0,1} denote the outcome of interest at time t.
» Let Wi, € {0,1} be the treatment at time t.

v

Problem Setup
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Assumptions

Assumption 1 (MDP with Network Interference)
Each unit i =1, ..., nis characterized by an activation function f;(-) such that, conditionally
on Yl:t and Wl:tv
Yie+1) ~ Ber(fi(Yie, Wit, Zit)) independently,
where Zjy = .\ Vjr, and 0 < fi(y, w, z) <1forall y, w € {0, 1} and z € R.
» Fitness app example: The probability of an individual goes running tomorrow depends on

whether she went running today (Yz),

whether she receives any encouraging message from the app (W),
— the total number of her friends that went running today (Z:),

her individual characteristics ().
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Assumptions

Assumption 1 (MDP with Network Interference)
Each unit i =1, ..., nis characterized by an activation function f;(-) such that, conditionally
on Yi.: and Wiy,

Yie+1) ~ Ber(fi(Yie, Wit, Zit)) independently,

where Zjy = .\ Vjr, and 0 < fi(y, w, z) <1forall y, w € {0, 1} and z € R.

Y Yoy Y Yy PR

JEN; jeN; JEN;

Yio-n q Y, q Yioen)

t t 1

‘/Vi(t—Z) W'i(z— 1) vVit

Problem Setup 12



Assumptions

Assumption 2 (Bernoulli treatment)
The treatments W, ~ Ber(m;) independently for each i and each t.

Problem Setup
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Causal Estimands

» Short-term direct effect. The short-term direct effect quantifies the immediate effect of
the unit's treatment on its own outcome.

1 n
TSDE,t = E Z f: (Yita 1vzit) - f: (Yit,07Zit)~
i=1

» Long-term direct effect. The long-term direct effect captures the long-term effect of the
unit's treatment on its own outcome, averaged over units.

1 n
TLDE(A/la '72) - E Z (Ep(ﬂ;:71,7'r_,-) [\/I] - E,u(m:’yz,ﬂ_,-) [%]) .
i=1
Here u(m; = 7, m_;) stands for the stationary distribution of the MDP when the treatment
probability of the i-th unit has been changed to 7.

Problem Setup
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Causal Estimands

> Long-term total effect.
It measures the effect of changing the entire treatment vector from 7, to m; on the
expected average outcome under the stationary distribution.

n

re(my, m2) = %Z( (r) [Yi] = By [Vi1) -

i=1

Problem Setup
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Existence of a stationary distribution

Since both Yj; and W are binary random variables, the function f; can be decomposed into
four terms:
fily,w,z) = ai(z) + bi(2)w + ci(2)y + di(z)wy.
Additional assumptions:
» Boundedness and Lipschitzness. Each function f; is Lipschitz with Lipschitz constant L,
in its third argument. The functions ¢; and d; satisfy |c;(z) + d;j(z)w| < B for any z € R
and any w € {0, 1}.
» Node Degree. The largest node degree of the interference graph is bounded by D,.
» Contraction The constants B, L, and D, satisfy B+ L,D, < C < 1.
Example: Erdos-Rényi
Each edge is included in the interference graph with probability p,, independently from every
other edge, i.e., Ej ~ Bernoulli(p,) independently.

1
L, ~ , D, ~ np,.
npn
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Existence of a stationary distribution

1. Under the above Assumptions, there exists a stationary distribution u(r), such that if
Yo ~ p(~), then Yy ~ u(n) for any t > 0.

2. Furthermore, the Markov chain (induced by the Bernoulli policy) is ergodic, i.e., the
stationary distribution p(w) is unique. For any initial distribution of Yy, we have that

Y: = u(m) as t — oo.

Weak Convergence 17



Mean-Field Characterization

Difficulties:

— Under the stationary distribution p, outcome Y;'s are not independent.
— The state space is of size 2".

Consider a dynamical system—a “mean-field” version of the Markov Chain.

Let Py = (Pit, Pat, ..., Pat) € [0,1]" be the state of the dynamical system at time t. The
evolution rule of the system is the following:

Pitt+1) = fi( Pie, mi, Qit)
= a; (Qir) + bi (Qit) mi + ¢i (Qit) Pir + di (Qit) mi Pie,

where Qi = > ic v Pie-

We can interpret P;; as the probability that Y;. = 1 given past information. Here, the
state of the /-th user depends directly on its neighbors probabilities rather than their
realized outcomes.

Weak Convergence
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Mean-Field Characterization

Markov chain

It? It7 E Y]t

JEN;

Y/(t+1) ~ Ber

2 Y > Yoy Y,

JEN; JEN;
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Weak Convergence

Dynamical system

Pi(f+1) = f;'(PitaTria Z ’Djt)
JEN;

D P > Py 2 P

JEN; €N JEN;
Pig-1y q Py q Pigsn)

t 1t 1

Ti1-2) Ti(—1) Ty
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Mean-Field Characterization

» Easier to study

— The probabilities are non-random numbers, thus if the outcomes Y;: ~ Bern(Pj)
independently, then the Yj;'s are independent.
— The fixed point of the dynamical system can be characterized by a vector of length n.

1. There exists a fixed point P* € [0,1]" of the dynamical system, i.e., if P, = P*, then
Pii1 = P*.
2. The fixed point is unique, and for any value of Py, we have P — P* as t — oc.

Weak Convergence 20



How good is the mean-field approximation?

» Y ~ u(r), where p() is the stationary distribution of the Markov chain.

» Y ~ Ber(P}) independently, where P* is the fixed point of the dynamical system.
» |s Y close to Y* in distribution?

» Define an L1-Wasserstein distance between two laws v and v»

W/_1 (Vl, 1/2) = inf {E [||X1 - X2||1] : ,C(Xl) = 1/1,£ (Xz) = Vz}.

Wi, (1, £(Y*)) < /1Y C/(2(1 = €))

Weak Convergence 21



Short-term direct effect

» Recall that
TSDE,t = — Z f It7 1 th) i ( It70 th)

> A natural estimator to use here is the inverse propensity weighted (IPW) estimator:

W, 1-W,
TIPWt—_ZYH—l) <_t— 1_7r.t>~
i=1 I I

» The IPW estimator is consistent for the short-term direct effect.

~ 1
TIPW = TSDE,t + Op ﬁ .

Characterization and estimation of the causal estimands 22



Long-term direct effect

» Recall that

1 n
TLDE('yla ’72) = E Z (E,u(m:’yl,w_,-) [\/I] - Eu(m:’yz,w_,-) [\/I]) .
i=1

» Under this stationary distribution,

Eu(ﬂf:"wmf) [Yi]
= Ey(mimry,n_y) [fi(Yi, Wi, Z3)]
= B, (mi=y,x_) [3i(Zi) + bi(Zi) W, + ci(Z;) Y + di( Z) W; Y]
~ By (=g, [8i(Z0)] + Ep(ry=y,m ) [Bi(Z0)] 7
+ Eﬂ(ﬂi:’yﬂf—f) [ci(Z)] ]E#(‘fri:%‘"—i) [Yi] + Eu(ﬂi:%ﬂ—i) [di(Z))] WE#(‘":‘:%"—:') [vil,

if W;, Y; and Z; are roughly independent.

Characterization and estimation of the causal estimands
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Long-term direct effect

» Moving all terms involving E,,(x,— ~_,) [Yi] to the left hand side, we get

Bimi=y,mi) [3i(Z0)] + Bpgmi=y,m ) [i(Z0)] v
1- Eﬂ(ﬂﬁ':%ﬂ'fi) [Ci(Zi)] - Eu(m:w,ﬂ,,) [d/(Z/)] Y

» If we assume that Z;'s are not influenced too much by the treatment probability of unit /,
then

(=

E,(x) [3i/(Z)] + By [6i(Z0)] v
1 =By [6(Z)] — By [di(ZD)]

E#(Wi:%ﬂ—i) [Y’] ~

Characterization and estimation of the causal estimands
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Long-term direct effect

The above heuristic in fact correctly recovers the long-term direct effect.

_ Eymlai(Z) + bi(Zi)y]
Eumrao = g iz azm O (Vi)

> It suffices to estimate E () [ai(Zit)] , - - -, E () [di(Zi)] for each i.

Characterization and estimation of the causal estimands 25



Long-term direct effect

> It suffices to estimate E () [ai(Zit)] , - - -, E () [di(Zie)] for each i.
» Recall that
fily,w,z) = ai(z) + bi(z)w + ci(z)y + di(z)wy.
» Take E,(r) [ai(Zit)] as an example. Let
o RS Vi (1= Wie)(1 = Ya)
— T *
% Et:l(]‘ - VVit)(l - Yit)

E [(31' —Eum) [a;(z,-,,)])z] <G (% + Ln) ,

for some constant Cy; not depending on i or n.

» Challenge: Yj;'s are not independent.

Characterization and estimation of the causal estimands 26



Long-term direct effect

> Let

R 1
TLoe(71,72) = -
i=1

Characterization and estimation of the causal estimands 27



Long-term total effect

» Recall that

n

1
mre(m + Av, ) = - > (Bugrran) [Vl = Eum [Yi) -
i=1

where [[v|| = /n.

» Hard to analyze the stationary distribution: start with fixed point of the dynamical system
» When A is small,

Py (r+ Bv) = PH(r) ~ B PEm + 8V) & A (V2P (r)'V).

» Recall that P* satisfies
P (m) = ai (QF (7)) + b; (QF (m)) mi + i (QF (7)) P7(m) + di (QF (m)) mi P} (),

where Q7 () = ;e Pr(m).

Characterization and estimation of the causal estimands 28



Long-term total effect

Pi(m) = ai (@7 (m)) + bi (QF (m)) mi + ¢ (QF (7)) P (m) + di (QF (7)) mi Pf (),
Let pf(m) = VL P?(m)"v. Taking derivative on both hand side gives:
pi () = bi (Q (7)) vi + d; (QF (m)) P (m)vi + [ci (QF (m)) + di (QF () mi] P,*( )+
(4} (Q7 (m)) + b} (QF (m)) mi + ¢/ (QF () PF (m) + df (@ (m)) miP; (m)] D pf(m

JEN;
We have a set of linear equations for pf()’s.
Solving for p*(m) gives
p*() = (1 — DA— W)™
where A is the adjacency matrix of the interference graph,
D = diag (a} (@ (7)) + b (QF (m)) mi + ¢/ (QF (m)) Py (m) + df (QF (7)) 7r,F’*(W))
W = diag (c; (Q7 (7)) + d; (Q7 (m)) 7). and u = vec (vi(bi(QfF (7)) + d; (QF (7)) P7 (7).

Characterization and estimation of the causal estimands
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Long-term total effect

» Summarizing the above findings, we have

~ * A . *
fre(m + Av,wr) = ,Z Pi(m+Av) = Pi(m) ~ — > (VP
i=1 i=1

= %lTp*(ﬂ) = %P(/ —DA—-wW)!

» Questions remaining:

— Is 7ire(m + Av, ) close to Tire(m + Av, 7)?
— How good is the above approximation?

Characterization and estimation of the causal estimands
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Long-term total effect

nre(m + Av, ) = Tire(n + Av, ) + O <\/L_,,> .

Under some additional smoothness assumption,

Tre(m + Apv, )
A, o

n

%r(/ _DA-W)lu+0 (\ZL_ 4 An) .
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Long-term total effect

» The above shows that
A T —1
TLTE(ﬂ'—l-AV,ﬂ')%fl (I—DA—W) u.
n

» The estimation strategy is to estimate the components D, W and u separately.
This involves estimating a; (Q7 (7)), b} (QF (7)), ....

> We estimate a} (Q; (7)) by running a regression of Yj(;1y on Z;; conditioning on Yj; =0
and Wj; = 0 using data from different time points.

v

» Challenges:
— aj is not linear,
— data points are not i.i.d., and thus standard results from linear regression do not apply
directly.

Characterization and estimation of the causal estimands
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Long-term total effect

> We define A
fire(m+ Av,m) = —17(1 - DA — W) 'a.

Assume that A varies with n. We write A, to emphasize such dependency.

7’>|_TE(7T+A,,V,7T) _ TLTE(7T+A,,V,7[') ~

TG N (Y Gy (= S
A, N A, P\a,vD, " \VT VD,))
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Thank you!

Characterization and estimation of the causal estimands
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