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Motivation

I Effect of motivational message on level of physical activities

I Seems to be easy: Run RCTs?
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Interference

I An individual’s outcome could depend on other individuals’ outcomes.
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Dynamic Nature

I An additional time axis.
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Micro-Randomized Trials

I The micro-randomized trial (MRT) is an experimental design that is often used to help
evaluate and optimize dynamic interventions.

I We focus on Bernoulli treatments.
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Problem Setup

I There are n subjects of interests indexed by i = 1, . . . , n.

I Assume that there is an undirected graph with indices corresponding to the n subject. We
call the undirected graph the interference network or the interference graph. We use {Eij}
to denote the edge set of the graph.

I Let Ni = {j : Eij = 1} be the set of neighbors of subject i .

I Let Yit ∈ {0, 1} denote the outcome of interest at time t.

I Let Wit ∈ {0, 1} be the treatment at time t.
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Assumptions

Assumption 1 (MDP with Network Interference)
Each unit i = 1, . . . , n is characterized by an activation function fi (·) such that, conditionally
on Y1:t and W1:t ,

Yi(t+1) ∼ Ber(fi (Yit ,Wit ,Zit)) independently,

where Zit =
∑

j∈Ni
Yjt , and 0 < fi (y , w , z) < 1 for all y , w ∈ {0, 1} and z ∈ R+.

I Fitness app example: The probability of an individual goes running tomorrow depends on

– whether she went running today (Yit),
– whether she receives any encouraging message from the app (Wit),
– the total number of her friends that went running today (Zit),
– her individual characteristics (fi ).
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Assumptions

Assumption 2 (Bernoulli treatment)
The treatments Wit ∼ Ber(πi ) independently for each i and each t.
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Causal Estimands

I Short-term direct effect. The short-term direct effect quantifies the immediate effect of
the unit’s treatment on its own outcome.

τSDE,t =
1

n

n∑
i=1

fi (Yit , 1,Zit)− fi (Yit , 0,Zit) .

I Long-term direct effect. The long-term direct effect captures the long-term effect of the
unit’s treatment on its own outcome, averaged over units.

τLDE(γ1, γ2) =
1

n

n∑
i=1

(
Eµ(πi=γ1,π−i ) [Yi ]− Eµ(πi=γ2,π−i ) [Yi ]

)
.

Here µ(πi = γ, π−i ) stands for the stationary distribution of the MDP when the treatment
probability of the i-th unit has been changed to γ.
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Causal Estimands

I Long-term total effect.
It measures the effect of changing the entire treatment vector from π2 to π1 on the
expected average outcome under the stationary distribution.

τLTE(π1, π2) =
1

n

n∑
i=1

(
Eµ(π1) [Yi ]− Eµ(π2) [Yi ]

)
.
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Existence of a stationary distribution

Since both Yit and Wit are binary random variables, the function fi can be decomposed into
four terms:

fi (y ,w , z) = ai (z) + bi (z)w + ci (z)y + di (z)wy .

Additional assumptions:
I Boundedness and Lipschitzness. Each function fi is Lipschitz with Lipschitz constant Ln

in its third argument. The functions ci and di satisfy |ci (z) + di (z)w | ≤ B for any z ∈ R+

and any w ∈ {0, 1}.
I Node Degree. The largest node degree of the interference graph is bounded by Dn.
I Contraction The constants B, Ln and Dn satisfy B + LnDn ≤ C < 1.

Example: Erdős-Rényi
Each edge is included in the interference graph with probability ρn, independently from every
other edge, i.e., Eij ∼ Bernoulli(ρn) independently.

Ln ∼
1

nρn
, Dn ∼ nρn.
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Existence of a stationary distribution

Proposition (Stationary distribution)

1. Under the above Assumptions, there exists a stationary distribution µ(π), such that if
Y0 ∼ µ(π), then Yt ∼ µ(π) for any t ≥ 0.

2. Furthermore, the Markov chain (induced by the Bernoulli policy) is ergodic, i.e., the
stationary distribution µ(π) is unique. For any initial distribution of Y0, we have that
Yt ⇒ µ(π) as t →∞.
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Mean-Field Characterization

I Difficulties:

– Under the stationary distribution µ, outcome Yi ’s are not independent.
– The state space is of size 2n.

I Consider a dynamical system—a “mean-field” version of the Markov Chain.

I Let Pt = (P1t ,P2t , . . . ,Pnt) ∈ [0, 1]n be the state of the dynamical system at time t. The
evolution rule of the system is the following:

Pi(t+1) = fi (Pit , πi ,Qit)

= ai (Qit) + bi (Qit)πi + ci (Qit)Pit + di (Qit)πiPit ,

where Qit =
∑

j∈Ni
Pjt .

I We can interpret Pi,t as the probability that Yi,t = 1 given past information. Here, the
state of the i-th user depends directly on its neighbors probabilities rather than their
realized outcomes.
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Mean-Field Characterization

Markov chain

Yi(t+1) ∼ Ber
(
fi (Yit ,Wit ,

∑
j∈Ni

Yjt)
) Dynamical system

Pi(t+1) = fi (Pit , πi ,
∑
j∈Ni

Pjt)
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Mean-Field Characterization

I Easier to study

– The probabilities are non-random numbers, thus if the outcomes Yit ∼ Bern(Pit)
independently, then the Yit ’s are independent.

– The fixed point of the dynamical system can be characterized by a vector of length n.

Proposition (Fixed point)

1. There exists a fixed point P? ∈ [0, 1]n of the dynamical system, i.e., if Pt = P?, then
Pt+1 = P?.

2. The fixed point is unique, and for any value of P0, we have Pt → P? as t →∞.
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How good is the mean-field approximation?

I Y ∼ µ(π), where µ(π) is the stationary distribution of the Markov chain.

I Y ?
i ∼ Ber(P?i ) independently, where P? is the fixed point of the dynamical system.

I Is Y close to Y ? in distribution?

I Define an L1-Wasserstein distance between two laws ν1 and ν2

WL1 (ν1, ν2) = inf {E [‖X1 − X2‖1] : L (X1) = ν1,L (X2) = ν2} .

Theorem (Mean field approximation)

WL1 (µ,L(Y ?)) ≤ n
√
Ln
√
C/(2(1− C ))

Weak Convergence 21



Short-term direct effect

I Recall that

τSDE,t =
1

n

n∑
i=1

fi (Yit , 1,Zit)− fi (Yit , 0,Zit) .

I A natural estimator to use here is the inverse propensity weighted (IPW) estimator:

τ̂IPW,t =
1

n

n∑
i=1

Yi(t+1)

(
Wt

πi
− 1−Wt

1− πi

)
.

I The IPW estimator is consistent for the short-term direct effect.

Theorem (Short-term direct effect estimation)

τ̂IPW = τSDE,t +Op

(
1√
n

)
.
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Long-term direct effect

I Recall that

τLDE(γ1, γ2) =
1

n

n∑
i=1

(
Eµ(πi=γ1,π−i ) [Yi ]− Eµ(πi=γ2,π−i ) [Yi ]

)
.

I Under this stationary distribution,

Eµ(πi=γ,π−i ) [Yi ]

= Eµ(πi=γ,π−i ) [fi (Yi ,Wi ,Zi )]

= Eµ(πi=γ,π−i ) [ai (Zi ) + bi (Zi )Wi + ci (Zi )Yi + di (Zi )WiYi ]

≈ Eµ(πi=γ,π−i ) [ai (Zi )] + Eµ(πi=γ,π−i ) [bi (Zi )] γ

+ Eµ(πi=γ,π−i ) [ci (Zi )]Eµ(πi=γ,π−i ) [Yi ] + Eµ(πi=γ,π−i ) [di (Zi )] γEµ(πi=γ,π−i ) [Yi ] ,

if Wi , Yi and Zi are roughly independent.

Characterization and estimation of the causal estimands 23



Long-term direct effect

I Moving all terms involving Eµ(πi=γ,π−i ) [Yi ] to the left hand side, we get

Eµ(πi=γ,π−i ) [Yi ] ≈
Eµ(πi=γ,π−i ) [ai (Zi )] + Eµ(πi=γ,π−i ) [bi (Zi )] γ

1− Eµ(πi=γ,π−i ) [ci (Zi )]− Eµ(πi=γ,π−i ) [di (Zi )] γ
.

I If we assume that Zi ’s are not influenced too much by the treatment probability of unit i ,
then

Eµ(πi=γ,π−i ) [Yi ] ≈
Eµ(π) [ai (Zi )] + Eµ(π) [bi (Zi )] γ

1− Eµ(π) [ci (Zi )]− Eµ(π) [di (Zi )] γ
.
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Long-term direct effect

The above heuristic in fact correctly recovers the long-term direct effect.

Theorem (Long-term direct effect characterization)

Eµ(πi=γ,π−i ) [Yi ] =
Eµ(π) [ai (Zi ) + bi (Zi )γ]

Eµ(π) [1− ci (Zi )− di (Zi )γ]
+O

(√
Ln
)
.

I It suffices to estimate Eµ(π) [ai (Zit)] , . . . ,Eµ(π) [di (Zit)] for each i .
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Long-term direct effect

I It suffices to estimate Eµ(π) [ai (Zit)] , . . . ,Eµ(π) [di (Zit)] for each i .
I Recall that

fi (y ,w , z) = ai (z) + bi (z)w + ci (z)y + di (z)wy .

I Take Eµ(π) [ai (Zit)] as an example. Let

âi =
1
T

∑T
t=1 Yi(t+1)(1−Wit)(1− Yit)

1
T

∑T
t=1(1−Wit)(1− Yit)

.

Proposition

E
[(
âi − Eµ(π) [ai (Zit)]

)2
]
≤ C1

(
1

T
+ Ln

)
,

for some constant C1 not depending on i or n.

I Challenge: Yit ’s are not independent.
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Long-term direct effect

I Let

τ̂LDE(γ1, γ2) =
1

n

n∑
i=1

âi + b̂iγ1

1− ĉi − d̂iγ1

− 1

n

n∑
i=1

âi + b̂iγ2

1− ĉi − d̂iγ2

.

Corollary (Long-term direct effect estimation)

τ̂LDE(γ1, γ2)− τLDE(γ1, γ2) = Op

(
1√
T

+
√
Ln

)
.
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Long-term total effect

I Recall that

τLTE(π + ∆v , π) =
1

n

n∑
i=1

(
Eµ(π+∆v) [Yi ]− Eµ(π) [Yi ]

)
.

where ‖v‖ =
√
n.

I Hard to analyze the stationary distribution: start with fixed point of the dynamical system

I When ∆ is small,

P?i (π + ∆v)− P?i (π) ≈ ∆
d

d∆
P?i (π + ∆v) ≈ ∆ (∇πP?i (π)Tv) .

I Recall that P∗ satisfies

P?i (π) = ai (Q?
i (π)) + bi (Q?

i (π))πi + ci (Q?
i (π))P?i (π) + di (Q?

i (π))πiP
?
i (π),

where Q?
i (π) =

∑
j∈Ni

P?j (π).
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Long-term total effect

I P?i (π) = ai (Q?
i (π)) + bi (Q?

i (π))πi + ci (Q?
i (π))P?i (π) + di (Q?

i (π))πiP
?
i (π),

I Let p?i (π) = ∇πP?i (π)Tv . Taking derivative on both hand side gives:

p?i (π) = bi (Q?
i (π)) vi + di (Q?

i (π))P?i (π)vi + [ci (Q?
i (π)) + di (Q?

i (π))πi ] p?i (π) +

[a′i (Q?
i (π)) + b′i (Q?

i (π))πi + c ′i (Q?
i (π))P?i (π) + d ′i (Q?

i (π))πiP
?
i (π)]

∑
j∈Ni

p?j (π) .

I We have a set of linear equations for p?i (π)’s.

I Solving for p?i (π) gives
p?(π) = (I − DA−W )−1u,

where A is the adjacency matrix of the interference graph,
D = diag

(
a′i (Q?

i (π)) + b′i (Q?
i (π))πi + c ′i (Q?

i (π))P?i (π) + d ′i (Q?
i (π))πiP

?
i (π)

)
,

W = diag
(
ci (Q?

i (π)) + di (Q?
i (π))πi

)
, and u = vec

(
vi (bi (Q

?
i (π)) + di (Q?

i (π))P?i (π))
)
.
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Long-term total effect

I Summarizing the above findings, we have

τ̃LTE(π + ∆v , π) =
1

n

n∑
i=1

(P?i (π + ∆v)− P?i (π)) ≈ ∆

n

n∑
i=1

(∇πP?i (π)Tv) =
∆

n

n∑
i=1

p?i (π)

=
∆

n
1Tp?(π) =

∆

n
1T(I − DA−W )−1u.

I Questions remaining:

– Is τLTE(π + ∆v , π) close to τ̃LTE(π + ∆v , π)?
– How good is the above approximation?

Characterization and estimation of the causal estimands 30



Long-term total effect

Theorem

τLTE(π + ∆v , π) = τ̃LTE(π + ∆v , π) +O
(√

Ln
)
.

Theorem (Long-term total effect characterization)

Under some additional smoothness assumption,

τLTE(π + ∆nv , π)

∆n
=

1

n
1T(I − DA−W )−1u +O

(√
Ln

∆n
+ ∆n

)
.
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Long-term total effect

I The above shows that

τLTE(π + ∆v , π) ≈ ∆

n
1T(I − DA−W )−1u.

I The estimation strategy is to estimate the components D, W and u separately.

I This involves estimating a′i (Q?
i (π)), b′i (Q?

i (π)), . . . .

I We estimate a′i (Q?
i (π)) by running a regression of Yi(t+1) on Zit conditioning on Yit = 0

and Wit = 0 using data from different time points.

I Challenges:

– ai is not linear,
– data points are not i.i.d., and thus standard results from linear regression do not apply

directly.
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Long-term total effect

I We define

τ̂LTE(π + ∆v , π) =
∆

n
1T(I − D̂A− Ŵ )−1û.

Theorem (Long-term total effect estimation)

Assume that ∆ varies with n. We write ∆n to emphasize such dependency.

τ̂LTE(π + ∆nv , π)

∆n
=
τLTE(π + ∆nv , π)

∆n
+ Õp

(
1

∆n

√
Dn

+ ∆n +

(
Dn√
T

+
1√
Dn

))
.
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Thank you!
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