Network Interference in Micro-Randomized Trials

Shuangning Li

Stanford University

Nathan's Group Meeting

Joint work with

Stefan Wager

Li, S., & Wager, S. (2022). Network Interference in Micro-Randomized Trials. *arXiv* preprint arXiv:2202.05356.

Motivation

Effect of motivational message on level of physical activities

Motivation

Effect of motivational message on level of physical activities

Seems to be easy: Run RCTs?

Introduction

Interference

► An individual's outcome could depend on other individuals' outcomes.

Dynamic Nature

An additional time axis.

Introduction

The micro-randomized trial (MRT) is an experimental design that is often used to help evaluate and optimize dynamic interventions.

...

► We focus on Bernoulli treatments.

The micro-randomized trial (MRT) is an experimental design that is often used to help evaluate and optimize dynamic interventions.

...

► We focus on Bernoulli treatments.

- The micro-randomized trial (MRT) is an experimental design that is often used to help evaluate and optimize dynamic interventions.
- ► We focus on Bernoulli treatments.

- The micro-randomized trial (MRT) is an experimental design that is often used to help evaluate and optimize dynamic interventions.
- ▶ We focus on Bernoulli treatments.

Introduction

Problem Setup

- There are *n* subjects of interests indexed by i = 1, ..., n.
- Assume that there is an undirected graph with indices corresponding to the *n* subject. We call the undirected graph the *interference network* or the *interference graph*. We use {*E_{ij}*} to denote the edge set of the graph.
- Let $\mathcal{N}_i = \{j : E_{ij} = 1\}$ be the set of neighbors of subject *i*.
- Let $Y_{it} \in \{0, 1\}$ denote the outcome of interest at time t.
- Let $W_{it} \in \{0, 1\}$ be the treatment at time t.

Assumptions

Assumption 1 (MDP with Network Interference)

Each unit i = 1, ..., n is characterized by an activation function $f_i(\cdot)$ such that, conditionally on $Y_{1:t}$ and $W_{1:t}$,

 $Y_{i(t+1)} \sim \text{Ber}(f_i(Y_{it}, W_{it}, Z_{it}))$ independently,

where $Z_{it} = \sum_{j \in \mathcal{N}_i} Y_{jt}$, and $0 < f_i(y, w, z) < 1$ for all $y, w \in \{0, 1\}$ and $z \in \mathbb{R}_+$.

- ▶ Fitness app example: The probability of an individual goes running tomorrow depends on
 - whether she went running today (Y_{it}) ,
 - whether she receives any encouraging message from the app (W_{it}) ,
 - the total number of her friends that went running today (Z_{it}) ,
 - her individual characteristics (f_i) .

Problem Setup

Assumptions

Assumption 1 (MDP with Network Interference)

Each unit i = 1, ..., n is characterized by an activation function $f_i(\cdot)$ such that, conditionally on $Y_{1:t}$ and $W_{1:t}$,

 $Y_{i(t+1)} \sim \text{Ber}(f_i(Y_{it}, W_{it}, Z_{it}))$ independently,

where $Z_{it} = \sum_{j \in \mathcal{N}_i} Y_{jt}$, and $0 < f_i(y, w, z) < 1$ for all $y, w \in \{0, 1\}$ and $z \in \mathbb{R}_+$.

Problem Setup

. . .

Assumptions

Assumption 2 (Bernoulli treatment) The treatments $W_{it} \sim Ber(\pi_i)$ independently for each *i* and each *t*.

Causal Estimands

Short-term direct effect. The short-term direct effect quantifies the immediate effect of the unit's treatment on its own outcome.

$$\tau_{\mathsf{SDE},t} = \frac{1}{n} \sum_{i=1}^{n} f_i \left(Y_{it}, 1, Z_{it} \right) - f_i \left(Y_{it}, 0, Z_{it} \right).$$

Long-term direct effect. The long-term direct effect captures the long-term effect of the unit's treatment on its own outcome, averaged over units.

$$\tau_{\mathsf{LDE}}(\gamma_1,\gamma_2) = \frac{1}{n} \sum_{i=1}^n \left(\mathbb{E}_{\mu(\pi_i=\gamma_1,\pi_{-i})} \left[Y_i \right] - \mathbb{E}_{\mu(\pi_i=\gamma_2,\pi_{-i})} \left[Y_i \right] \right).$$

Here $\mu(\pi_i = \gamma, \pi_{-i})$ stands for the stationary distribution of the MDP when the treatment probability of the *i*-th unit has been changed to γ .

Problem Setup

Causal Estimands

► Long-term total effect.

It measures the effect of changing the entire treatment vector from π_2 to π_1 on the expected average outcome under the stationary distribution.

$$au_{\mathsf{LTE}}(\pi_1,\pi_2) = rac{1}{n} \sum_{i=1}^n \left(\mathbb{E}_{\mu(\pi_1)} \left[Y_i
ight] - \mathbb{E}_{\mu(\pi_2)} \left[Y_i
ight]
ight).$$

Problem Setup

Existence of a stationary distribution

Since both Y_{it} and W_{it} are binary random variables, the function f_i can be decomposed into four terms:

$$f_i(y,w,z) = a_i(z) + b_i(z)w + c_i(z)y + d_i(z)wy.$$

Additional assumptions:

- ▶ Boundedness and Lipschitzness. Each function f_i is Lipschitz with Lipschitz constant L_n in its third argument. The functions c_i and d_i satisfy $|c_i(z) + d_i(z)w| \le B$ for any $z \in \mathbb{R}_+$ and any $w \in \{0, 1\}$.
- **Node Degree**. The largest node degree of the interference graph is bounded by D_n .
- **Contraction** The constants B, L_n and D_n satisfy $B + L_n D_n \le C < 1$.

Example: Erdős-Rényi

Each edge is included in the interference graph with probability ρ_n , independently from every other edge, i.e., $E_{ij} \sim \text{Bernoulli}(\rho_n)$ independently.

$$L_n \sim \frac{1}{n\rho_n}, \qquad D_n \sim n\rho_n.$$

Existence of a stationary distribution

Proposition (Stationary distribution)

- 1. Under the above Assumptions, there exists a stationary distribution $\mu(\pi)$, such that if $Y_0 \sim \mu(\pi)$, then $Y_t \sim \mu(\pi)$ for any $t \ge 0$.
- 2. Furthermore, the Markov chain (induced by the Bernoulli policy) is ergodic, i.e., the stationary distribution $\mu(\pi)$ is unique. For any initial distribution of Y_0 , we have that $Y_t \Rightarrow \mu(\pi)$ as $t \to \infty$.

Mean-Field Characterization

Difficulties:

- Under the stationary distribution μ_i , outcome Y_i 's are not independent.
- The state space is of size 2^n .
- Consider a dynamical system—a "mean-field" version of the Markov Chain.

▶ Let $P_t = (P_{1t}, P_{2t}, ..., P_{nt}) \in [0, 1]^n$ be the state of the dynamical system at time t. The evolution rule of the system is the following:

$$\begin{aligned} P_{i(t+1)} &= f_i(P_{it}, \pi_i, Q_{it}) \\ &= a_i(Q_{it}) + b_i(Q_{it}) \pi_i + c_i(Q_{it}) P_{it} + d_i(Q_{it}) \pi_i P_{it} \end{aligned}$$

where $Q_{it} = \sum_{j \in \mathcal{N}_i} P_{jt}$.

• We can interpret $P_{i,t}$ as the **probability** that $Y_{i,t} = 1$ given past information. Here, the state of the *i*-th user depends directly on its neighbors probabilities rather than their realized outcomes.

Mean-Field Characterization

Markov chain

Dynamical system

$$Y_{i(t+1)} \sim \mathsf{Ber}\left(f_i(Y_{it}, W_{it}, \sum_{j \in \mathcal{N}_i} Y_{jt})\right)$$

$$P_{i(t+1)} = f_i(P_{it}, \pi_i, \sum_{j \in \mathcal{N}_i} P_{jt})$$

Mean-Field Characterization

Easier to study

- The probabilities are non-random numbers, thus if the outcomes $Y_{it} \sim \text{Bern}(P_{it})$ independently, then the Y_{it} 's are independent.
- The fixed point of the dynamical system can be characterized by a vector of length n.

Proposition (Fixed point)

- 1. There exists a fixed point $P^* \in [0,1]^n$ of the dynamical system, i.e., if $P_t = P^*$, then $P_{t+1} = P^*$.
- 2. The fixed point is unique, and for any value of P_0 , we have $P_t \to P^*$ as $t \to \infty$.

How good is the mean-field approximation?

- $Y \sim \mu(\pi)$, where $\mu(\pi)$ is the stationary distribution of the Markov chain.
- $Y_i^{\star} \sim \text{Ber}(P_i^{\star})$ independently, where P^{\star} is the fixed point of the dynamical system.
- ▶ Is *Y* close to *Y*^{*} in distribution?
- Define an L_1 -Wasserstein distance between two laws ν_1 and ν_2

$$W_{L_1}(\nu_1, \nu_2) = \inf \{ \mathbb{E} [\|X_1 - X_2\|_1] : \mathcal{L}(X_1) = \nu_1, \mathcal{L}(X_2) = \nu_2 \}.$$

Theorem (Mean field approximation)

$$W_{L_1}(\mu, \mathcal{L}(Y^{\star})) \leq n\sqrt{L_n}\sqrt{C}/(2(1-C))$$

Short-term direct effect

Recall that

$$\tau_{\text{SDE},t} = \frac{1}{n} \sum_{i=1}^{n} f_i \left(Y_{it}, 1, Z_{it} \right) - f_i \left(Y_{it}, 0, Z_{it} \right).$$

▶ A natural estimator to use here is the inverse propensity weighted (IPW) estimator:

$$\hat{\tau}_{\mathsf{IPW},t} = \frac{1}{n} \sum_{i=1}^{n} Y_{i(t+1)} \left(\frac{W_t}{\pi_i} - \frac{1 - W_t}{1 - \pi_i} \right)$$

▶ The IPW estimator is consistent for the short-term direct effect.

Theorem (Short-term direct effect estimation)

$$\hat{\tau}_{\mathsf{IPW}} = \tau_{\mathsf{SDE},t} + \mathcal{O}_{p}\left(\frac{1}{\sqrt{n}}\right).$$

Recall that

$$au_{\mathsf{LDE}}(\gamma_1,\gamma_2) = rac{1}{n}\sum_{i=1}^n \left(\mathbb{E}_{\mu(\pi_i=\gamma_1,\pi_{-i})}\left[Y_i
ight] - \mathbb{E}_{\mu(\pi_i=\gamma_2,\pi_{-i})}\left[Y_i
ight]
ight).$$

Under this stationary distribution,

$$\begin{split} \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})} \left[Y_i \right] \\ &= \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})} \left[f_i(Y_i, W_i, Z_i) \right] \\ &= \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})} \left[a_i(Z_i) + b_i(Z_i) W_i + c_i(Z_i) Y_i + d_i(Z_i) W_i Y_i \right] \\ &\approx \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})} \left[a_i(Z_i) \right] + \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})} \left[b_i(Z_i) \right] \gamma \\ &\quad + \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})} \left[c_i(Z_i) \right] \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})} \left[Y_i \right] + \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})} \left[d_i(Z_i) \right] \gamma \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})} \left[Y_i \right], \end{split}$$

if W_i , Y_i and Z_i are roughly independent.

▶ Moving all terms involving $\mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})}[Y_i]$ to the left hand side, we get

$$\mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})}[Y_i] \approx \frac{\mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})}[a_i(Z_i)] + \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})}[b_i(Z_i)]\gamma}{1 - \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})}[c_i(Z_i)] - \mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})}[d_i(Z_i)]\gamma}.$$

• If we assume that Z_i 's are not influenced too much by the treatment probability of unit *i*, then

$$\mathbb{E}_{\mu(\pi_i=\gamma,\pi_{-i})}[Y_i] \approx \frac{\mathbb{E}_{\mu(\pi)}[a_i(Z_i)] + \mathbb{E}_{\mu(\pi)}[b_i(Z_i)]\gamma}{1 - \mathbb{E}_{\mu(\pi)}[c_i(Z_i)] - \mathbb{E}_{\mu(\pi)}[d_i(Z_i)]\gamma}.$$

The above heuristic in fact correctly recovers the long-term direct effect.

Theorem (Long-term direct effect characterization)

$$\mathbb{E}_{\mu\left(\pi_{i}=\gamma,\pi_{-i}\right)}\left[Y_{i}\right] = \frac{\mathbb{E}_{\mu\left(\pi\right)}\left[a_{i}(Z_{i})+b_{i}(Z_{i})\gamma\right]}{\mathbb{E}_{\mu\left(\pi\right)}\left[1-c_{i}(Z_{i})-d_{i}(Z_{i})\gamma\right]} + \mathcal{O}\left(\sqrt{L_{n}}\right).$$

▶ It suffices to estimate $\mathbb{E}_{\mu(\pi)}[a_i(Z_{it})], \ldots, \mathbb{E}_{\mu(\pi)}[d_i(Z_{it})]$ for each *i*.

It suffices to estimate E_{μ(π)} [a_i(Z_{it})],..., E_{μ(π)} [d_i(Z_{it})] for each i.
 Recall that

$$f_i(y,w,z) = a_i(z) + b_i(z)w + c_i(z)y + d_i(z)wy.$$

▶ Take $\mathbb{E}_{\mu(\pi)}[a_i(Z_{it})]$ as an example. Let

$$\hat{a}_i = rac{rac{1}{T}\sum_{t=1}^T Y_{i(t+1)}(1-W_{it})(1-Y_{it})}{rac{1}{T}\sum_{t=1}^T (1-W_{it})(1-Y_{it})}.$$

Proposition

$$\mathbb{E}\left[\left(\hat{a}_i - \mathbb{E}_{\mu(\pi)}\left[a_i(Z_{it})\right]\right)^2\right] \leq C_1\left(\frac{1}{T} + L_n\right),$$

for some constant C_1 not depending on i or n.

• Challenge: Y_{it} 's are not independent.

• Let

$$\hat{\tau}_{\mathsf{LDE}}(\gamma_1, \gamma_2) = \frac{1}{n} \sum_{i=1}^n \frac{\hat{a}_i + \hat{b}_i \gamma_1}{1 - \hat{c}_i - \hat{d}_i \gamma_1} - \frac{1}{n} \sum_{i=1}^n \frac{\hat{a}_i + \hat{b}_i \gamma_2}{1 - \hat{c}_i - \hat{d}_i \gamma_2}.$$

Corollary (Long-term direct effect estimation)

$$\hat{ au}_{\mathsf{LDE}}(\gamma_1,\gamma_2) - au_{\mathsf{LDE}}(\gamma_1,\gamma_2) = \mathcal{O}_{oldsymbol{
ho}}\left(rac{1}{\sqrt{T}} + \sqrt{L_n}
ight).$$

Recall that

$$au_{\mathsf{LTE}}(\pi + \Delta oldsymbol{
u}, \pi) = rac{1}{n} \sum_{i=1}^{n} \left(\mathbb{E}_{\mu(\pi + \Delta oldsymbol{
u})} \left[Y_i
ight] - \mathbb{E}_{\mu(\pi)} \left[Y_i
ight]
ight).$$

where $\|\boldsymbol{v}\| = \sqrt{n}$.

Hard to analyze the stationary distribution: start with fixed point of the dynamical system
 When Δ is small,

$$P_i^\star(\pi+\Deltaoldsymbol{v})-P_i^\star(\pi)pprox\Deltarac{d}{d\Delta}P_i^\star(\pi+\Deltaoldsymbol{v})pprox\Delta(
abla_\pi P_i^\star(\pi)^{ op}oldsymbol{v})\,.$$

Recall that P* satisfies

 $P_{i}^{\star}(\pi) = a_{i}(Q_{i}^{\star}(\pi)) + b_{i}(Q_{i}^{\star}(\pi))\pi_{i} + c_{i}(Q_{i}^{\star}(\pi))P_{i}^{\star}(\pi) + d_{i}(Q_{i}^{\star}(\pi))\pi_{i}P_{i}^{\star}(\pi),$

where $Q_i^{\star}(\pi) = \sum_{j \in \mathcal{N}_i} P_j^{\star}(\pi)$.

$$\blacktriangleright P_i^{\star}(\pi) = a_i \left(Q_i^{\star}(\pi) \right) + b_i \left(Q_i^{\star}(\pi) \right) \pi_i + c_i \left(Q_i^{\star}(\pi) \right) P_i^{\star}(\pi) + d_i \left(Q_i^{\star}(\pi) \right) \pi_i P_i^{\star}(\pi)$$

• Let $p_i^{\star}(\pi) = \nabla_{\pi} P_i^{\star}(\pi)^{\mathsf{T}} \boldsymbol{v}$. Taking derivative on both hand side gives:

$$p_{i}^{\star}(\pi) = b_{i}(Q_{i}^{\star}(\pi)) v_{i} + d_{i}(Q_{i}^{\star}(\pi)) P_{i}^{\star}(\pi) v_{i} + [c_{i}(Q_{i}^{\star}(\pi)) + d_{i}(Q_{i}^{\star}(\pi)) \pi_{i}] p_{i}^{\star}(\pi) + [a_{i}'(Q_{i}^{\star}(\pi)) + b_{i}'(Q_{i}^{\star}(\pi)) \pi_{i} + c_{i}'(Q_{i}^{\star}(\pi)) P_{i}^{\star}(\pi) + d_{i}'(Q_{i}^{\star}(\pi)) \pi_{i} P_{i}^{\star}(\pi)] \sum_{j \in \mathcal{N}_{i}} p_{j}^{\star}(\pi)$$

• We have a set of linear equations for
$$p_i^*(\pi)$$
's.

Solving for $p_i^{\star}(\pi)$ gives

$$\boldsymbol{p}^{\star}(\pi) = (\boldsymbol{I} - \boldsymbol{D}\boldsymbol{A} - \boldsymbol{W})^{-1}\boldsymbol{u},$$

where A is the adjacency matrix of the interference graph, $D = \text{diag} \left(a'_i(Q_i^{\star}(\pi)) + b'_i(Q_i^{\star}(\pi)) \pi_i + c'_i(Q_i^{\star}(\pi)) P_i^{\star}(\pi) + d'_i(Q_i^{\star}(\pi)) \pi_i P_i^{\star}(\pi) \right),$ $W = \text{diag} \left(c_i(Q_i^{\star}(\pi)) + d_i(Q_i^{\star}(\pi)) \pi_i \right), \text{ and } \mathbf{u} = \text{vec} \left(v_i(b_i(Q_i^{\star}(\pi)) + d_i(Q_i^{\star}(\pi)) P_i^{\star}(\pi)) \right).$

Summarizing the above findings, we have

$$\widetilde{\tau}_{\mathsf{LTE}}(\pi + \Delta \mathbf{v}, \pi) = \frac{1}{n} \sum_{i=1}^{n} \left(P_i^{\star}(\pi + \Delta \mathbf{v}) - P_i^{\star}(\pi) \right) \approx \frac{\Delta}{n} \sum_{i=1}^{n} \left(\nabla_{\pi} P_i^{\star}(\pi)^{\mathsf{T}} \mathbf{v} \right) = \frac{\Delta}{n} \sum_{i=1}^{n} p_i^{\star}(\pi)$$
$$= \frac{\Delta}{n} \mathbf{1}^{\mathsf{T}} p^{\star}(\pi) = \frac{\Delta}{n} \mathbf{1}^{\mathsf{T}} (I - DA - W)^{-1} \mathbf{u}.$$

Questions remaining:

- Is $\tau_{\text{LTE}}(\pi + \Delta \boldsymbol{v}, \pi)$ close to $\tilde{\tau}_{\text{LTE}}(\pi + \Delta \boldsymbol{v}, \pi)$?
- How good is the above approximation?

Theorem

$$au_{\mathsf{LTE}}(\pi + \Delta \mathbf{v}, \pi) = \widetilde{ au}_{\mathsf{LTE}}(\pi + \Delta \mathbf{v}, \pi) + \mathcal{O}\left(\sqrt{L_n}\right).$$

Theorem (Long-term total effect characterization)

Under some additional smoothness assumption,

$$\frac{\tau_{\mathsf{LTE}}(\pi + \Delta_n \boldsymbol{v}, \pi)}{\Delta_n} = \frac{1}{n} \mathbf{1}^{\mathsf{T}} (I - DA - W)^{-1} \boldsymbol{u} + \mathcal{O}\left(\frac{\sqrt{L_n}}{\Delta_n} + \Delta_n\right)$$

Characterization and estimation of the causal estimands

.

The above shows that

$$au_{\mathsf{LTE}}(\pi + \Delta \boldsymbol{v}, \pi) \approx \frac{\Delta}{n} \mathbf{1}^{\mathsf{T}} (I - DA - W)^{-1} \boldsymbol{u}.$$

- \blacktriangleright The estimation strategy is to estimate the components D, W and u separately.
- ▶ This involves estimating $a'_i(Q^*_i(\pi)), b'_i(Q^*_i(\pi)), \ldots$
- We estimate $a'_i(Q_i^*(\pi))$ by running a regression of $Y_{i(t+1)}$ on Z_{it} conditioning on $Y_{it} = 0$ and $W_{it} = 0$ using data from different time points.

Challenges:

- a_i is not linear,
- data points are not i.i.d., and thus standard results from linear regression do not apply directly.

$$\hat{\tau}_{\mathsf{LTE}}(\pi + \Delta \boldsymbol{v}, \pi) = \frac{\Delta}{n} \mathbf{1}^{\mathsf{T}} (I - \hat{D}A - \hat{W})^{-1} \hat{\boldsymbol{u}}.$$

Theorem (Long-term total effect estimation)

Assume that Δ varies with n. We write Δ_n to emphasize such dependency.

$$rac{\widehat{ au}_{\mathsf{LTE}}(\pi + \Delta_n oldsymbol{v}, \pi)}{\Delta_n} = rac{ au_{\mathsf{LTE}}(\pi + \Delta_n oldsymbol{v}, \pi)}{\Delta_n} + \widetilde{\mathcal{O}}_{
ho} \left(rac{1}{\Delta_n \sqrt{D_n}} + \Delta_n + \left(rac{D_n}{\sqrt{T}} + rac{1}{\sqrt{D_n}}
ight)
ight).$$

Thank you!