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Motivation

I Imagine researchers are interested in whether a particular genetic variant influence a trait.

?⇒ risk of disease / body mass index

I Let X denote the genetic variant. Let Y be the trait.

I First idea: test for whether X |= Y . Not working because X can be correlated with other
variables that influence Y .

X Z1 Z2 Z3
. . .

Y
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Conditional Independence

I Idea: test for conditional independence!

I H0 : X |= Y | Z .

I Here, Y is the response variable of interest, X is an explanatory variable and Z are
confounding variables (potentially high dimensional).

I There are n i.i.d. samples of (Y ,X ,Z ) denoted as (Yi ,Xi ,Zi·), and let
y = (Y1,Y2, . . . ,Yn)T ∈ Rn, x = (X1,X2, . . . ,Xn)T ∈ Rn, and
Z = (Z1·,Z2·, . . . ,Zn·)

T ∈ Rn×p.
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Conditional Randomization Test

I Introduced by Candès et al. (2018).

For m ∈ {1, . . . ,M}
Sample x (m) from the distribution of x |Z , independently of x and y .

Output The p -value

pCRT =
1

M + 1

(
1 +

M∑

m=1

1

{
T (y , x ,Z ) ≤ T (y , x (m),Z )

})
.
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Conditional Randomization Test

x |= y | ZGoal: Sample x(1) x(2) . . . x(M)
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Conditional Randomization Test

x |= y | ZGoal: Sample x(1) x(2) . . . x(M)

Compute T (0)
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Conditional Randomization Test

x |= y | ZGoal: Sample x(1) x(2) . . . x(M)

Compute T (0) T (1)
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Conditional Randomization Test

x |= y | ZGoal: Sample x(1) x(2) . . . x(M)

Compute T (0) T (1) T (2)
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Conditional Randomization Test

x |= y | ZGoal: Sample x(1) x(2) . . . x(M)

Compute T (0) T (1) T (2) . . . T (M)
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Conditional Randomization Test

x |= y | ZGoal: Sample x(1) x(2) . . . x(M)

Compute T (0) T (1) T (2) . . . T (M)

p-value pj =
1

M+1

(
1 + #

{
: ≥

})
T (m) T (m) T (0)
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Conditional Randomization Test

Theorem (Candès et al. (2018))

If X |= Y | Z, then the p-values from CRT satisfy P [pj ≤ α] ≤ α, for any α ∈ [0, 1]. This
holds regardless of the test statistic T (·).

I Requires perfect knowledge of the distribution of x | Z .

I Let ρ?n be the distribution of x | Z . Assume in CRT, x (b) are generated instead from ρn.
Berrett et al. (2020) showed that

P (pCRT ≤ α) ≤ α + dTV(ρ?n, ρn)︸ ︷︷ ︸
Model-X error

.

The bound is tight when M is large.
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This work

I In addition to the knowledge of the distribution of X | Z , we also have knowledge of the
distribution of Y | Z . Can we make use of this additional knowledge and make CRT more
robust?

I We propose a Maxway (Model and Adjust X With the Assistance of Y) CRT.

I Type-I error inflation of Model-X CRT is ∆x .
Type-I error inflation of Maxway CRT is ∆x∆y + ∆x|g .
Here ∆x , ∆y and ∆x|g are the estimation errors for the distributions of x | Z , y | Z and
x | g(Z ) respectively.

I ”double robustness” in type-I error control.
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A simple model

Suppose Z is a high dimensional random variable, but X and Y only depend on a small subset
of the Zj ’s. Assume that Z = (Z1, . . . ,Zp), and

X = φ(Z1,Z2) + ε, Y = ψ(Z2,Z3) + η.

Z1 Z2 Z3 Z4 Z5
. . . Zp

X Y

Sx Sy

I To implement the original Model-X CRT, need to know Sx and the distribution of X | ZSx .
I Assume for now that given a set S whose cardinality is not huge, we are able to learn the

distribution of X | ZS accurately.
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A simple model

I A guess of the set: S. Then (a special version of) the CRT becomes

1. For m = 1, 2, ...,M:
Sample x (m) from the distribution of x | Z ·S independently of (x , y).

2. Output CRT p-value

pCRT =
1

M + 1

(
1 +

M∑
m=1

1
{
T (y , x (m),Z ·S) ≥ T (y , x ,Z ·S)

})
.

I If S contains {1, 2}, the p -value is valid.

I If S contains {2, 3}, the p -value is valid as well. This is because X |= Y | ZS . The above
procedure can be treated alternatively as a CRT for (X ,Y ,ZS).

I Some knowledge of how Y depends on Z can be useful in enhancing robustness in CRT.
Without any information or prior knowledge on Y , to achieve validity, the best we can
hope for is the set S to contain Sx . Extra information on the distribution of Y relaxes the
condition of the validity of the p -value.
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Maxway CRT

I Assume that

X
approximately

|= Z | h(Z ) , Y
approximately

|= Z | g(Z ),

for some low dimensional functions of g and h.

Z1 Z2 Z3 Z4 Z5
. . . Zp

X Y

h(Z) = (Z1, Z2) g(Z) = (Z2, Z3)

Method: Maxway CRT 16



Maxway CRT

I Assume that

X
approximately

|= Z | h(Z ) , Y
approximately

|= Z | g(Z ),

for some low dimensional functions of g and h.

I Sparse linear model: X = αTZSx + ε, where Sx ⊂ {1, . . . , p}. h(Z ) = ZSx or
h(Z ) = αTZSx .

I More general setting: the distribution of X given Z is very complicated.

– Do a transformation: R(X ,Z) = FX (X | Z). If X has a continuous distribution conditional
on Z , then R(X ,Z) ∼ Unif[0, 1] both marginally and conditionally on Z . Thus
R(X ,Z) |= Z . We can take h to be a null set.

– Test whether R(X ,Z) is independent of Y conditional on Z .
– Extracting the residual of X after removing the influence of Z .
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Maxway CRT

Let ρ?(· | g(Z ), h(Z )) be the conditional distribution of X given g(Z ) and h(Z ), and let ρ be
an estimate of ρ?.

Model and adjust X with the assistance of Y (Maxway) CRT

1. Sample x (m) from the distribution of ρn(· | g(Z ), h(Z )) independently of (x , y).

2. Output Maxway CRT p-value

pmaxway =
1

M + 1

(
1 +

M∑

m=1

1
{
T (x (m), y , g(Z ), h(Z )) ≥ T (x , y , g(Z ), h(Z ))

})
.
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Exact Inference

Theorem

Suppose that either of the following conditions holds: (i) each x (m) is exchangeable with x
given Z ; (ii) x (m) is exchangeable with x given {h(Z ), g(Z )}, and Z |= y | g(Z ). Then the
Maxway CRT p-value defined is valid, i.e., P [pmaxway ≤ α] ≤ α for any α ∈ [0, 1] under H0.

I For (i), proof from standard CRT. T (x (m), y , g(Z ), h(Z )) is exchangeable with
T (x , y , g(Z ), h(Z )).

I For (ii), x |= y | (g(Z ), h(Z ))⇒ T (x (m), y , g(Z ), h(Z )) is exchangeable with
T (x , y , g(Z ), h(Z )).
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Exact Inference

Theorem

Suppose that either of the following conditions holds: (i) each x (m) is exchangeable with x
given Z ; (ii) x (m) is exchangeable with x given {h(Z ), g(Z )}, and Z |= y | g(Z ). Then the
Maxway CRT p-value defined is valid, i.e., P [pmaxway ≤ α] ≤ α for any α ∈ [0, 1] under H0.

I Compared to the conditions for the Model-X CRT p -value to be valid, the conditions
stated in this theorem is strictly weaker.

I Condition (i) requires that the knowledge of the distribution of X given Z is perfect.
Condition (ii) requires that g(Z ) contains all the information about Y that Z can possibly
provide, and that the distribution of X given the low dimensional g(Z ) and h(Z ) is known.

Method: Maxway CRT 20



Robustness of the Maxway CRT

I When g , h and ρ are not perfect anymore...

Theorem

For any α ∈ (0, 1),

P [pmaxway ≤ α] ≤ α + 2E [dx(Z )dy (Z )] + E [dρ(g(Z ), h(Z ))] ,

where
dρ(g(Z ), h(Z )) = dTV (ρ?n(· | g(Z ), h(Z )), ρn(· | g(Z ), h(Z ))),

dx(Z ) = dTV
(
ρ?n(· | g(Z ), h(Z )), fx|Z (· | Z )

)
, and

dy (Z ) = dTV
(
fy |Z (· | Z ), fy |g(Z)(· | g(Z ))

)
.

Method: Maxway CRT 21



Robustness of the Maxway CRT

Theorem

For any α ∈ (0, 1),

P [pmaxway ≤ α] ≤ α + 2E
[
dx(Z ) dy (Z )

]
+ E [dρ(g(Z ), h(Z ))] ,

where dx(Z ) = dTV
(
ρ?n(· | g(Z ), h(Z )), fx|Z (· | Z )

)
.

I Recall ρ?n(· | g(Z ), h(Z )) = fx|h(Z),g(Z)(· | g(Z ), h(Z )).

I Captures how independent X is to Z conditional on h(Z ).

I When X |= Z | h(Z ), then the conditional distribution of X | Z would be the same as
X | h(Z ), thus the term is zero.
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Robustness of the Maxway CRT

Theorem

For any α ∈ (0, 1),

P [pmaxway ≤ α] ≤ α + 2E
[
dx(Z ) dy (Z )

]
+ E [dρ(g(Z ), h(Z ))] ,

where dy (Z ) = dTV
(
fy |Z (· | Z ), fy |g(Z)(· | g(Z ))

)
.

I Captures how independent Y is to Z conditional on g(Z ).

I When Y |= Z | g(Z ), then the conditional distribution of Y | Z would be the same as
Y | g(Z ), thus the term is zero.
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Robustness of the Maxway CRT

Theorem

For any α ∈ (0, 1),

P [pmaxway ≤ α] ≤ α + 2E [dx(Z )dy (Z )] + E
[
dρ(g(Z ), h(Z ))

]
,

where dρ(g(Z ), h(Z )) = dTV (ρ?n(· | g(Z ), h(Z )), ρn(· | g(Z ), h(Z ))) .

I The dρ term is about the accuracy of ρ, i.e., how accurate we can estimate the
distribution of X given low dimensional objects h(Z ) and g(Z ).
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Compared to the Model-X CRT

I Model-X CRT
P [pmx ≤ α] ≤ α + d ′x ≈ α + dρ + dx .

I Maxway CRT
P [pmaxway ≤ α] ≤ α + dρ + 2dxdy .

I For maxway CRT, the test statistic can only be a function of x , y , g(Z ), h(Z ). Not the
most general form. But has a computational advantage (Liu et al., 2020), and it is
typically powerful (Katsevich and Ramdas, 2020)
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Examples

Example (Gaussian linear example, estimation)
Yi = Z T

i·α
? + εi , Xi = Z T

i·β
? + ηi . Take g(Z ) to be an estimate of the mean function Z T

i·α
?.

Take h(Z ) to be an estimate of the mean function Z T

i·β
?. Estimate the parameters with lasso.

Type-I error inflation of the Maxway CRT .
√

n

Nρ
+

√
sα log(p)n

Ny

√
sβ log(p)n

Nx
.

Type-I error inflation of the Model-X CRT .

√
sβ log(p)n

Nx
.
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Examples

Example (Gaussian linear example, variable selection)
Yi = Z T

i·α
? + εi , Xi = Z T

i·β
? + ηi . Take g(Z ) to be an estimate of ZS? , where S? is the support

of α?. Take h(Z ) to be an estimate of the mean function Z T

i·β
?. Estimate the

parameters/support with lasso.

Type-I error inflation of the Maxway CRT .
√

nsα
Nρ

+ δ

√
sβ log(p)n

Nx
,

where 1− δ is the probability of exact recovery of the support of α?.

Type-I error inflation of the Model-X CRT .

√
sβ log(p)n

Nx
.
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Examples

Example (Binary X , smooth mean functions)
Yi = g?(Zi·) + εi , where εi ∼ N (0, σ2

y ) independently and Xi ∼ Bern(h?(Zi·)) independently.
In the Maxway CRT, we take g(Zi·) to be an estimate of g?(Zi·) and take h(Zi·) to be an
estimate of h?(Zi·). Assume g? is α-smooth, h? is β-smooth. Estimate the mean functions
with a kernel method.

Type-I error inflation of the Maxway CRT .
√
nN
− γ

2γ+2
ρ + nN

− α
2α+p

y N
− β

2β+p
x .

Type-I error inflation of the Model-X CRT .
√
nN
− β

2β+p
x .
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Semi-supervised Scenario

I Labelled data D = (y , x ,Z ) of sample size n

I Unlabelled data Du = (xu,Z u) → train h and ρ

I How to train g? What if we don’t have a external dataset of (y ,Z )?

– Train g on D.
– Theory cannot be directly applied. Still hope to avoid overfitting.
– ”Cross-fitting”. Divide the data D into K fold. Train g on the K − 1 folds and evaluate

g(Zi ) on the other fold.
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Simulations

Gaussian Linear Model
Generate Z ∈ Rp from N(0,Σ) where p = 500 and Σ = (σij)p×p with σij = 0.5|i−j|. Then
generate the conditional gaussian X and Y following:

X = 0.3
5∑

j=1

νjZj + η
∑

`∈I1

ν`Z` + ε1; Y = γh(X ,Z ) + 0.3
5∑

j=1

νjZj + η
∑

`∈I2

ν`Z` + ε2,

where ε1, ε2 ∼ N (0, 1), each νj is randomly picked from {−1, 1}, and I1, I2 are two disjoint
sets of indices randomly drawn from {6, 7, . . . , p} satisfying |I1| = |I2| = 25.

I η: how strong is the confounding? η = 0, 0.1, 0.2: strong, moderate, weak
overlapping/confounding.

I γ = 0: evaluate type I error.

I γ 6= 0: power curve.
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Simulations
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Simulations
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Simulations
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Simulations: nonlinear model
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Real Data Example

I Statins are one of the most commonly used drug in the United States for lowering the
level of low–density lipoprotein (LDL) and the risk of cardiovascular disease (CVD).

I Working mechanism: HMGCR inhibition

I Evidences showing that the use of statins could increase the risk for type II diabetes
mellitus (DM).

?⇒
I Unethical/expensive to conduct randomized control trial.

I Statins = absense of certain SNP in HMGCR.

I Test whether SNP |= diabetes | other variables—gives a biological perspective
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Real Data Example

I UK Biobank

I Z includes age, gender and genetic variants associated with DM or its related phenotypes
including high LDL, high–density lipoprotein (HDL) and BMI.

I p-values

Statistic CRT CPT Maxway CRT

d0 0.06 0.06 0.04

dI 0.16 0.18 0.13

Table: The d0 and dI p-values for the dependence of the risk of DM on the treatment of statins
functionally represented by the variant rs17238484-G.

I The Maxway CRT is not generally more conservative than the original Model-X CRT.
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Thank you!
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