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Motivation

> Imagine researchers are interested in whether a particular genetic variant influence a trait.

risk of disease / body mass index

» Let X denote the genetic variant. Let Y be the trait.

» First idea: test for whether X 1. Y. Not working because X can be correlated with other
variables that influence Y.
| x =
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Conditional Independence

» Idea: test for conditional independence!

» Here, Y is the response variable of interest, X is an explanatory variable and Z are
confounding variables (potentially high dimensional).

> There are ni.i.d. samples of (Y, X, Z) denoted as (Y;, X;, Z;.), and let
y = (Y17 Yo,..., Yn)T eER” x= (Xl,Xz,... ,Xn)T € R”, and
Z = (Zl.,ZQ‘7 c.. ,Zn‘)T € R™P,

v
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Conditional Randomization Test

» Introduced by Candés et al. (2018).

For me {1,...,M}
Sample x(™) from the distribution of x|Z, independently of x and y.
Output The p-value

PCRT =

<1+Z { (v.x,Z) < T(y, (),Z)}>.
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Conditional Randomization Test

Goal: | © A Y| Z Sample |z@) | |£®

Compute |pO | [7Q) | |7@| --- |p@1)

Y

p-value p; = Tl-s-l <1 + #{ T(m)| . |(m)
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Conditional Randomization Test

If X 1LY | Z, then the p-values from CRT satisfy P [p; < o] < «, for any o € [0,1]. This
holds regardless of the test statistic T (-).

» Requires perfect knowledge of the distribution of x | Z.

> Let p*" be the distribution of x | Z. Assume in CRT, x(®) are generated instead from p".
Berrett et al. (2020) showed that

P (pcrt < ) < a+drv(p™", p").
—_———
Model-X error

The bound is tight when M is large.
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This work

» In addition to the knowledge of the distribution of X | Z, we also have knowledge of the
distribution of Y | Z. Can we make use of this additional knowledge and make CRT more
robust?

» We propose a Maxway (Model and Adjust X With the Assistance of Y) CRT.

» Type-l error inflation of Model-X CRT is A,.
Type-I error inflation of Maxway CRT is A A, + A,
Here A, Ay and A, are the estimation errors for the distributions of x | Z, y | Z and
x | g(Z) respectively.

» "double robustness” in type-l error control.

Introduction
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A simple model

Suppose Z is a high dimensional random variable, but X and Y only depend on a small subset
of the Z;'s. Assume that Z = (Z,...,Z,), and

X =21, ) +e, Y =9(2L2,2Z5)+n.

4 ." AY

|z Zy 12— 25 |— Z Zs | - | %

1 5
X

Y

» To implement the original Model-X CRT, need to know S, and the distribution of X | Zs,.

» Assume for now that given a set S whose cardinality is not huge, we are able to learn the
distribution of X | Zs accurately.
Method: Maxway CRT

14



A simple model

> A guess of the set: S. Then (a special version of) the CRT becomes
1. Form=1,2, ... M:
Sample x™ from the distribution of x | Z.s independently of (x, y).
2. Output CRT p-value

M

_ 1 m

PCRT = m <1+mZ_II{T(.VaX 72»8) > T(y7x,245)}> :

> If S contains {1,2}, the p-value is valid.

> If S contains {2, 3}, the p-value is valid as well. This is because X Il Y | Zs. The above
procedure can be treated alternatively as a CRT for (X, Y, Zs).

» Some knowledge of how Y depends on Z can be useful in enhancing robustness in CRT.
Without any information or prior knowledge on Y, to achieve validity, the best we can
hope for is the set S to contain Sy. Extra information on the distribution of Y relaxes the
condition of the validity of the p-value.
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» Assume that

’

A}

Maxway CRT

approximately

approximately

L Zihz) . Y A Z|g(2),
for some low dimensional functions of g and h.
WD) = (20,2)  g(2) = (2.2)
Z Z, | Zs Zy Zs Zyp
X Y
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Maxway CRT

» Assume that

approximately approximately

xTU Tz Iz YA Z)g(2),
for some low dimensional functions of g and h.

> Sparse linear model: X = a"Zs, + ¢, where S, C {1,...,p}. h(Z) = Zs, or
h(Z)=a"Zs,.

» More general setting: the distribution of X given Z is very complicated.

— Do a transformation: R(X,Z) = Fx(X | Z). If X has a continuous distribution conditional
on Z, then R(X, Z) ~ Unif[0, 1] both marginally and conditionally on Z. Thus
R(X,Z) I Z. We can take h to be a null set.

— Test whether R(X, Z) is independent of Y conditional on Z.

— Extracting the residual of X after removing the influence of Z.

Method: Maxway CRT
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Maxway CRT

Let p*(- | g(Z), h(Z)) be the conditional distribution of X given g(Z) and h(Z), and let p be
an estimate of p*.

1. Sample x(™ from the distribution of p"(- | g(Z), h(Z)) independently of (x,y).
2. Output Maxway CRT p-value

By S e (1 3 U T(x™, y.6(2).H2)) = T(x,y.£(2), h(Z))}) .

Method: Maxway CRT 18



Exact Inference

Theorem

Suppose that either of the following conditions holds: (i) each x'™ is exchangeable with x
given Z; (i) x™ is exchangeable with x given {h(Z),g(Z)}, and Z 1y | g(Z). Then the
Maxway CRT p-value defined is valid, i.e., P [pmaxway < ¢&] < c for any o € [0, 1] under Hy.

> For (i), proof from standard CRT. T(x(™),y, g(Z), h(Z)) is exchangeable with
T(x,y,8(Z), h(Z)).

> For (ii), x 1Ly | (g(Z),h(Z)) = T(x(™,y,g(Z),h(Z)) is exchangeable with
T(x.y,&(Z),h(Z)).

Method: Maxway CRT
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Exact Inference

Theorem

Suppose that either of the following conditions holds: (i) each x'™ is exchangeable with x
given Z; (ii) x™ is exchangeable with x given {h(Z),g(Z)}, and Z 1.y | g(Z). Then the
Maxway CRT p-value defined is valid, i.e., P [pmaxway < ¢&] < c for any a € [0, 1] under Hy.

» Compared to the conditions for the Model-X CRT p-value to be valid, the conditions
stated in this theorem is strictly weaker.

» Condition (i) requires that the knowledge of the distribution of X given Z is perfect.
Condition (ii) requires that g(Z) contains all the information about Y that Z can possibly
provide, and that the distribution of X given the low dimensional g(Z) and h(Z) is known.

Method: Maxway CRT 20



Robustness of the Maxway CRT

» When g, h and p are not perfect anymore...

For any o € (0,1),
P [pmaxway < a] <a+2E [dx(z)dy(z)] +E [dp(g(z)’ h(Z))] s

where

d,(8(2), h(Z)) = drv (0*"(- | 8(2), h(2)), p"(- | &(Z), h(Z))),
di(2) = drv (0™"(- | 8(2), h(2)), fz(- | 2)), and

dy(Z) = drv (fyz(- | Z), f1e2)(- | £(2)))-

Method: Maxway CRT 21



Robustness of the Maxway CRT

Theorem
For any a € (0,1),

P [maway < 0] < a0+ 2E [ d(2) 6,(2)] +E [9,(&(2), H2))],
where dy(2) = dry(p™"(- | g(2), h(2)), fyz(-1 2)) .

> Recall p*"(- | g(Z), h(Z)) = fn(z).e(2)(- | &(Z), h(Z)).

> Captures how independent X is to Z conditional on h(Z).

» When X 1l Z | h(Z), then the conditional distribution of X | Z would be the same as
X | h(Z), thus the term is zero.

Method: Maxway CRT 22



Robustness of the Maxway CRT

For any o € (0,1),

P [Py < 0] < 0+ 28 [4(2) ,(2) | +E[d,((2). HZ)].
where d,(Z) = drv (fy|z(' | Z), fylg(z)(- | g(Z))) .

» Captures how independent Y is to Z conditional on g(Z).

» When Y Il Z | g(Z), then the conditional distribution of Y | Z would be the same as
Y | g(Z), thus the term is zero.

Method: Maxway CRT 23



Robustness of the Maxway CRT

For any o € (0,1),
P [Baway < ] < @+ 2B [d(2)d,(Z)] + E | d,(g(2),h(Z)) | .
where dy(g(Z), h(Z)) = drv (0™"(- | &(Z), h(Z2)), p"(- | &(Z), h(Z))) -
» The d, term is about the accuracy of p, i.e., how accurate we can estimate the

distribution of X given low dimensional objects h(Z) and g(Z).

Method: Maxway CRT 24



Compared to the Model-X CRT

» Model-X CRT
Plpmx <] <a+d, ~a+d,+ ds.

> Maxway CRT
P [pmaxway < Oé] <a+ dp + 2dxdy.

» For maxway CRT, the test statistic can only be a function of x,y, g(Z), h(Z). Not the
most general form. But has a computational advantage (Liu et al., 2020), and it is
typically powerful (Katsevich and Ramdas, 2020)

Method: Maxway CRT
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Examples

Example (Gaussian linear example, estimation)

Yi =Z a* +¢j, Xi = Z]B* + n;. Take g(Z) to be an estimate of the mean function Z7a*.
Take h(Z) to be an estimate of the mean function Z5*. Estimate the parameters with lasso.

o | I
Type-l error inflation of the Maxway CRT < n + sa 10g(p)n |5 og(p)n.
N, N, N,

I
Type-1 error inflation of the Model-X CRT < \/SBOEW.

Method: Maxway CRT
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Examples

Example (Gaussian linear example, variable selection)

Yi=Z a* +¢;, Xi = Z78* +n;. Take g(Z) to be an estimate of Zs+, where S* is the support
of a*. Take h(Z) to be an estimate of the mean function Z73*. Estimate the
parameters/support with lasso.

I
Type-1 error inflation of the Maxway CRT < \/,;\ITQ+ ) 550,5&,
P x

where 1 — § is the probability of exact recovery of the support of a*.

/s
Type-l error inflation of the Model-X CRT < 5’80,5&.

Method: Maxway CRT 27



Examples

Example (Binary X, smooth mean functions)

Y; = g*(Z:.) + &, where &; ~ N'(0,07) independently and X; ~ Bern(h*(Z;.)) independently.
In the Maxway CRT, we take g(Z;.) to be an estimate of g*(Z;.) and take h(Z:.) to be an
estimate of h*(Z;.). Assume g* is a-smooth, h* is S-smooth. Estimate the mean functions

with a kernel method.

. - T ——L
Type-| error inflation of the Maxway CRT < /nN, *** 4+ nN, *** N, **7.

_8_
Type-| error inflation of the Model-X CRT < v/nN, ***7.

Method: Maxway CRT 28



Semi-supervised Scenario

> Labelled data D = (y, x, Z) of sample size n
» Unlabelled data D" = (x“,Z") — train h and p

» How to train g? What if we don't have a external dataset of (y, Z)?

— Train g on D.

— Theory cannot be directly applied. Still hope to avoid overfitting.

— " Cross-fitting”. Divide the data D into K fold. Train g on the K — 1 folds and evaluate
g(Z:) on the other fold.

Method: Maxway CRT
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Simulations

Gaussian Linear Model o
Generate Z € RP from N(0, X) where p = 500 and X = () pxp With oj; = 0.5/, Then
generate the conditional gaussian X and Y following:

5 5
X=03Y vZi+nY wZi+e; Y=vh(X,2)+03> v,Zi+nY wnZi+e,
j=1 ey j=1 LeT,

where €1, €, ~ N (0, 1), each v; is randomly picked from {—1,1}, and Z;,Z; are two disjoint
sets of indices randomly drawn from {6,7, ..., p} satisfying |Z;| = |Z,| = 25.

» 7. how strong is the confounding? n = 0,0.1,0.2: strong, moderate, weak
overlapping/confounding.
» ~ = 0: evaluate type | error.

> ~ #£ 0: power curve.

Simulations
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Simulations
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Real Data Example

> Statins are one of the most commonly used drug in the United States for lowering the
level of low—density lipoprotein (LDL) and the risk of cardiovascular disease (CVD).

» Working mechanism: HMGCR inhibition

> Evidences showing that the use of statins could increase the risk for type Il diabetes
mellitus (DM).

@ ? s AL
o = 1ALk

» Unethical /expensive to conduct randomized control trial.
» Statins = absense of certain SNP in HMGCR.
» Test whether SNP Il diabetes | other variables—gives a biological perspective

Simulations 35



Real Data Example

> UK Biobank

» Z includes age, gender and genetic variants associated with DM or its related phenotypes
including high LDL, high—density lipoprotein (HDL) and BMI.

» p-values

Statistic  CRT CPT Maxway CRT

do 0.06 0.06 0.04
dr 0.16 0.18 0.13

Table: The do and di p-values for the dependence of the risk of DM on the treatment of statins
functionally represented by the variant rs17238484-G.

» The Maxway CRT is not generally more conservative than the original Model-X CRT.

Simulations
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Thank you!

Simulations
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