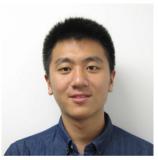
Maxway CRT: Improving the Robustness of Model-X Inference

Shuangning Li

Stanford University

Nov 2021

Joint work with



Molei Liu

Li & Liu (2021) "Maxway CRT: Improving the Robustness of Model-X Inference" *Draft in preparation*.

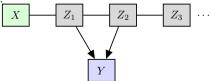
Motivation

▶ Imagine researchers are interested in whether a particular genetic variant influence a trait.

risk of disease / body mass index

Let X denote the genetic variant. Let Y be the trait.

► First idea: test for whether X ⊥⊥ Y. Not working because X can be correlated with other variables that influence Y._____



Conditional Independence

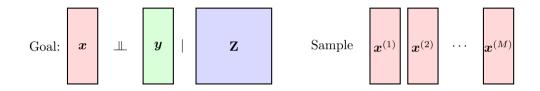
- Idea: test for conditional independence!
- $\blacktriangleright \mathcal{H}_0 : X \perp Y \mid Z.$
- Here, Y is the response variable of interest, X is an explanatory variable and Z are confounding variables (potentially high dimensional).
- ▶ There are *n* i.i.d. samples of (Y, X, Z) denoted as (Y_i, X_i, Z_i) , and let $\mathbf{y} = (Y_1, Y_2, \dots, Y_n)^{\mathsf{T}} \in \mathbb{R}^n$, $\mathbf{x} = (X_1, X_2, \dots, X_n)^{\mathsf{T}} \in \mathbb{R}^n$, and $\mathbf{Z} = (Z_1, Z_2, \dots, Z_n)^{\mathsf{T}} \in \mathbb{R}^{n \times p}$.

▶ Introduced by Candès et al. (2018).

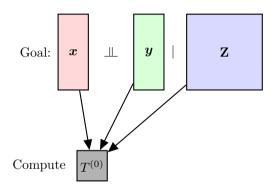
For $m \in \{1, ..., M\}$ Sample $x^{(m)}$ from the distribution of x | Z, independently of x and y. Output The *p*-value

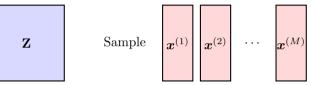
$$p_{\mathsf{CRT}} = rac{1}{M+1} \left(1 + \sum_{m=1}^M \mathbb{1}\left\{ T(oldsymbol{y},oldsymbol{x},oldsymbol{Z}) \leq T(oldsymbol{y},oldsymbol{x}^{(m)},oldsymbol{Z})
ight\}
ight)$$

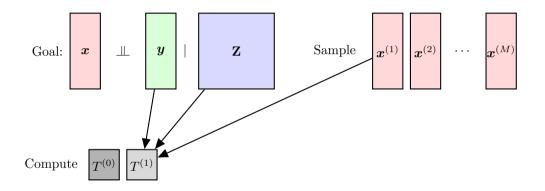
Introduction

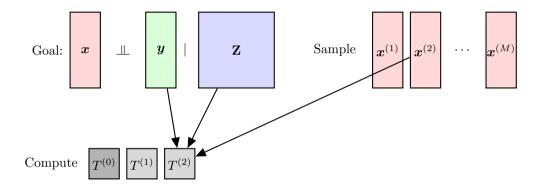


Introduction

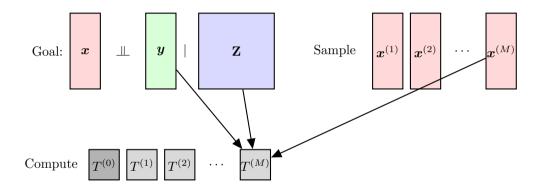


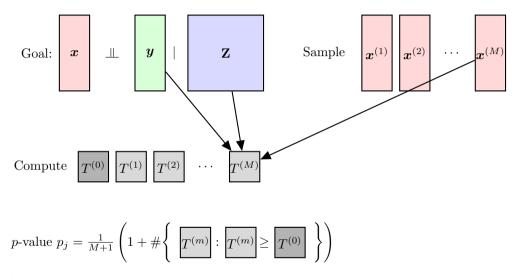






Introduction





Introduction

Theorem (Candès et al. (2018))

If $X \perp Y \mid Z$, then the p-values from CRT satisfy $\mathbb{P}[p_j \leq \alpha] \leq \alpha$, for any $\alpha \in [0,1]$. This holds regardless of the test statistic $T(\cdot)$.

- Requires perfect knowledge of the distribution of $x \mid Z$.
- Let $\rho^{\star n}$ be the distribution of $\mathbf{x} \mid \mathbf{Z}$. Assume in CRT, $\mathbf{x}^{(b)}$ are generated instead from ρ^{n} . Berrett et al. (2020) showed that

$$P(p_{CRT} \le \alpha) \le \alpha + \underbrace{d_{TV}(\rho^{\star n}, \rho^{n})}_{Model-X \text{ error}}.$$

The bound is tight when M is large.

Introduction

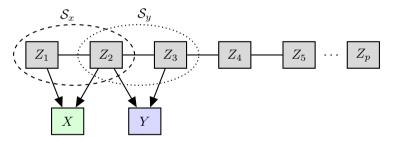
This work

- In addition to the knowledge of the distribution of X | Z, we also have knowledge of the distribution of Y | Z. Can we make use of this additional knowledge and make CRT more robust?
- ▶ We propose a Maxway (Model and Adjust X With the Assistance of Y) CRT.
- Type-I error inflation of Model-X CRT is Δ_x. Type-I error inflation of Maxway CRT is Δ_xΔ_y + Δ_{x|g}. Here Δ_x, Δ_y and Δ_{x|g} are the estimation errors for the distributions of x | Z, y | Z and x | g(Z) respectively.
- "double robustness" in type-I error control.

A simple model

Suppose Z is a high dimensional random variable, but X and Y only depend on a small subset of the Z_j 's. Assume that $Z = (Z_1, \ldots, Z_p)$, and

$$X=\phi(Z_1,Z_2)+arepsilon,\quad Y=\psi(Z_2,Z_3)+\eta.$$



To implement the original Model-X CRT, need to know S_x and the distribution of X | Z_{Sx}.
 Assume for now that given a set S whose cardinality is not huge, we are able to learn the distribution of X | Z_S accurately.

Method: Maxway CRT

A simple model

 \blacktriangleright A guess of the set: S. Then (a special version of) the CRT becomes

1. For m = 1, 2, ..., M:

Sample $x^{(m)}$ from the distribution of $x \mid Z_{\cdot S}$ independently of (x, y).

2. Output CRT *p*-value

$$p_{\mathsf{CRT}} = rac{1}{M+1} \left(1 + \sum_{m=1}^{M} \mathbf{1} \{ T(\boldsymbol{y}, \boldsymbol{x}^{(m)}, \boldsymbol{Z}_{\cdot \mathcal{S}}) \geq T(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{Z}_{\cdot \mathcal{S}}) \}
ight).$$

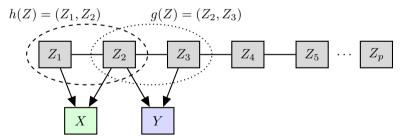
- If S contains $\{1,2\}$, the *p*-value is valid.
- ▶ If S contains $\{2,3\}$, the p-value is valid as well. This is because $X \perp Y \mid Z_S$. The above procedure can be treated alternatively as a CRT for (X, Y, Z_S) .
- Some knowledge of how Y depends on Z can be useful in enhancing robustness in CRT. Without any information or prior knowledge on Y, to achieve validity, the best we can hope for is the set S to contain S_x . Extra information on the distribution of Y relaxes the condition of the validity of the *p*-value.

Maxway CRT

Assume that

$$X \stackrel{\text{approximately}}{\coprod} Z \mid h(Z) \quad , \quad Y \stackrel{\text{approximately}}{\coprod} Z \mid g(Z),$$

for some low dimensional functions of g and h.



Maxway CRT

Assume that

 $X \stackrel{\text{approximately}}{\amalg} Z \mid h(Z) \quad , \quad Y \stackrel{\text{approximately}}{\amalg} Z \mid g(Z),$

for some low dimensional functions of g and h.

Sparse linear model: $X = \alpha^{\mathsf{T}} Z_{S_x} + \varepsilon$, where $S_x \subset \{1, \ldots, p\}$. $h(Z) = Z_{S_x}$ or $h(Z) = \alpha^{\mathsf{T}} Z_{S_x}$.

▶ More general setting: the distribution of *X* given *Z* is very complicated.

- Do a transformation: R(X, Z) = F_X(X | Z). If X has a continuous distribution conditional on Z, then R(X, Z) ~ Unif[0, 1] both marginally and conditionally on Z. Thus R(X, Z) ⊥ Z. We can take h to be a null set.
- Test whether R(X, Z) is independent of Y conditional on Z.
- Extracting the residual of X after removing the influence of Z.

Maxway CRT

Let $\rho^*(\cdot | g(Z), h(Z))$ be the conditional distribution of X given g(Z) and h(Z), and let ρ be an estimate of ρ^* .

Model and adjust X with the assistance of Y (Maxway) CRT

- 1. Sample $\mathbf{x}^{(m)}$ from the distribution of $\rho^n(\cdot \mid g(\mathbf{Z}), h(\mathbf{Z}))$ independently of (\mathbf{x}, \mathbf{y}) .
- 2. Output Maxway CRT p-value

$$p_{\mathsf{maxway}} = rac{1}{M+1} \left(1 + \sum_{m=1}^{M} \mathbf{1} \Big\{ T(oldsymbol{x}^{(m)}, oldsymbol{y}, g(oldsymbol{Z}), h(oldsymbol{Z})) \geq T(oldsymbol{x}, oldsymbol{y}, g(oldsymbol{Z}), h(oldsymbol{Z})) \Big\}
ight).$$

Exact Inference

Theorem

Suppose that either of the following conditions holds: (i) each $\mathbf{x}^{(m)}$ is exchangeable with \mathbf{x} given \mathbf{Z} ; (ii) $\mathbf{x}^{(m)}$ is exchangeable with \mathbf{x} given $\{h(\mathbf{Z}), g(\mathbf{Z})\}$, and $\mathbf{Z} \perp \mathbf{y} \mid g(\mathbf{Z})$. Then the Maxway CRT p-value defined is valid, i.e., $\mathbb{P}[p_{\text{maxway}} \leq \alpha] \leq \alpha$ for any $\alpha \in [0, 1]$ under \mathcal{H}_0 .

- For (i), proof from standard CRT. T(x^(m), y, g(Z), h(Z)) is exchangeable with T(x, y, g(Z), h(Z)).
- For (ii), $\mathbf{x} \perp \mathbf{y} \mid (g(\mathbf{Z}), h(\mathbf{Z})) \Rightarrow T(\mathbf{x}^{(m)}, \mathbf{y}, g(\mathbf{Z}), h(\mathbf{Z}))$ is exchangeable with $T(\mathbf{x}, \mathbf{y}, g(\mathbf{Z}), h(\mathbf{Z}))$.

Exact Inference

Theorem

Suppose that either of the following conditions holds: (i) each $\mathbf{x}^{(m)}$ is exchangeable with \mathbf{x} given \mathbf{Z} ; (ii) $\mathbf{x}^{(m)}$ is exchangeable with \mathbf{x} given $\{h(\mathbf{Z}), g(\mathbf{Z})\}$, and $\mathbf{Z} \perp \mathbf{y} \mid g(\mathbf{Z})$. Then the Maxway CRT p-value defined is valid, i.e., $\mathbb{P}[p_{\max way} \leq \alpha] \leq \alpha$ for any $\alpha \in [0, 1]$ under \mathcal{H}_0 .

- Compared to the conditions for the Model-X CRT p-value to be valid, the conditions stated in this theorem is strictly weaker.
- Condition (i) requires that the knowledge of the distribution of X given Z is perfect. Condition (ii) requires that g(Z) contains all the information about Y that Z can possibly provide, and that the distribution of X given the low dimensional g(Z) and h(Z) is known.

• When g, h and ρ are not perfect anymore...

Theorem

For any $\alpha \in (0,1)$,

$$\mathbb{P}\left[p_{\mathsf{maxway}} \leq lpha
ight] \leq lpha + 2\mathbb{E}\left[d_{x}(oldsymbol{Z}) d_{y}(oldsymbol{Z})
ight] + \mathbb{E}\left[d_{
ho}(g(oldsymbol{Z}),h(oldsymbol{Z}))
ight],$$

where $\begin{aligned} &d_{\rho}(g(\boldsymbol{Z}), h(\boldsymbol{Z})) = d_{\mathsf{TV}}\left(\rho^{\star n}(\cdot \mid g(\boldsymbol{Z}), h(\boldsymbol{Z})), \rho^{n}(\cdot \mid g(\boldsymbol{Z}), h(\boldsymbol{Z}))\right), \\ &d_{x}(\boldsymbol{Z}) = d_{\mathsf{TV}}\left(\rho^{\star n}(\cdot \mid g(\boldsymbol{Z}), h(\boldsymbol{Z})), f_{\boldsymbol{x}\mid\boldsymbol{Z}}(\cdot \mid \boldsymbol{Z})\right), \text{ and} \\ &d_{y}(\boldsymbol{Z}) = d_{\mathsf{TV}}\left(f_{\boldsymbol{y}\mid\boldsymbol{Z}}(\cdot \mid \boldsymbol{Z}), f_{\boldsymbol{y}\mid\boldsymbol{g}(\boldsymbol{Z})}(\cdot \mid g(\boldsymbol{Z}))\right). \end{aligned}$

Method: Maxway CRT

Theorem

For any $\alpha \in (0,1)$,

$$\mathbb{P}\left[\pmb{p}_{\mathsf{maxway}} \leq lpha
ight] \leq lpha + 2\mathbb{E}\left[\left. egin{smallmatrix} d_{\mathsf{x}}(oldsymbol{Z}) \ d_{\mathsf{y}}(oldsymbol{Z})
ight] + \mathbb{E}\left[d_{
ho}(g(oldsymbol{Z}),h(oldsymbol{Z}))
ight],$$

where
$$d_x(Z) = d_{\mathsf{TV}}\left(\rho^{\star n}(\cdot \mid g(Z), h(Z)), f_{X \mid Z}(\cdot \mid Z)\right)$$
.

- ► Recall $\rho^{\star n}(\cdot \mid g(\mathbf{Z}), h(\mathbf{Z})) = f_{x \mid h(\mathbf{Z}), g(\mathbf{Z})}(\cdot \mid g(\mathbf{Z}), h(\mathbf{Z})).$
- Captures how independent X is to Z conditional on h(Z).
- When X ⊥⊥ Z | h(Z), then the conditional distribution of X | Z would be the same as X | h(Z), thus the term is zero.

Theorem

For any $\alpha \in (0,1)$,

$$\mathbb{P}\left[\textit{p}_{\mathsf{maxway}} \leq lpha
ight] \leq lpha + 2\mathbb{E}\left[\textit{d}_{\mathsf{x}}(m{Z}) \; \textit{d}_{\mathsf{y}}(m{Z})
ight] + \mathbb{E}\left[\textit{d}_{
ho}(m{g}(m{Z}), \textit{h}(m{Z}))
ight],$$

where $d_y(Z) = d_{\mathsf{TV}}\left(f_{y|Z}(\cdot \mid Z), f_{y|g(Z)}(\cdot \mid g(Z))\right)$.

- Captures how independent Y is to Z conditional on g(Z).
- When Y ⊥⊥ Z | g(Z), then the conditional distribution of Y | Z would be the same as Y | g(Z), thus the term is zero.

Theorem

For any $\alpha \in (0,1)$,

$$\mathbb{P}\left[\pmb{p}_{\mathsf{maxway}} \leq lpha
ight] \leq lpha + 2\mathbb{E}\left[d_{\scriptscriptstyle X}(m{Z}) d_{\scriptscriptstyle Y}(m{Z})
ight] + \mathbb{E}\left[\left. egin{smallmatrix} d_{
ho}(m{g}(m{Z}),m{h}(m{Z}))
ight]
ight],$$

where $d_{\rho}(g(\mathbf{Z}), h(\mathbf{Z})) = d_{\mathsf{TV}}\left(\rho^{\star n}(\cdot \mid g(\mathbf{Z}), h(\mathbf{Z})), \rho^{n}(\cdot \mid g(\mathbf{Z}), h(\mathbf{Z}))\right)$.

The d_ρ term is about the accuracy of ρ, i.e., how accurate we can estimate the distribution of X given low dimensional objects h(Z) and g(Z).

Compared to the Model-X CRT

$$\mathbb{P}\left[\boldsymbol{p}_{\mathsf{mx}} \leq \alpha\right] \leq \alpha + \boldsymbol{d}'_{\mathsf{x}} \approx \alpha + \boldsymbol{d}_{\rho} + \boldsymbol{d}_{\mathsf{x}}.$$

Maxway CRT

$$\mathbb{P}\left[p_{\mathsf{maxway}} \leq \alpha \right] \leq \alpha + d_{\rho} + 2d_{x}d_{y}.$$

▶ For maxway CRT, the test statistic can only be a function of x, y, g(Z), h(Z). Not the most general form. But has a computational advantage (Liu et al., 2020), and it is typically powerful (Katsevich and Ramdas, 2020)

Examples

Example (Gaussian linear example, estimation)

 $Y_i = Z_{i.}^{\mathsf{T}} \alpha^* + \varepsilon_i$, $X_i = Z_{i.}^{\mathsf{T}} \beta^* + \eta_i$. Take g(Z) to be an estimate of the mean function $Z_{i.}^{\mathsf{T}} \alpha^*$. Take h(Z) to be an estimate of the mean function $Z_{i.}^{\mathsf{T}} \beta^*$. Estimate the parameters with lasso.

Type-I error inflation of the Maxway CRT
$$\lesssim \sqrt{\frac{n}{N_{\rho}}} + \sqrt{\frac{s_{\alpha}\log(p)n}{N_{y}}} \sqrt{\frac{s_{\beta}\log(p)n}{N_{x}}}$$

Type-I error inflation of the Model-X CRT $\lesssim \sqrt{\frac{s_{\beta}\log(p)n}{N_{x}}}$.

Examples

Example (Gaussian linear example, variable selection)

 $Y_i = Z_{i.}^{\mathsf{T}} \alpha^* + \varepsilon_i, X_i = Z_{i.}^{\mathsf{T}} \beta^* + \eta_i$. Take g(Z) to be an estimate of $Z_{\mathcal{S}^*}$, where \mathcal{S}^* is the support of α^* . Take h(Z) to be an estimate of the mean function $Z_{i.}^{\mathsf{T}} \beta^*$. Estimate the parameters/support with lasso.

Type-I error inflation of the Maxway
$$\mathsf{CRT} \lesssim \sqrt{\frac{n s_{\alpha}}{N_{
ho}}} + \delta \sqrt{\frac{s_{\beta} \log(p) n}{N_{x}}},$$

where $1 - \delta$ is the probability of exact recovery of the support of α^{\star} .

Type-I error inflation of the Model-X CRT
$$\lesssim \sqrt{rac{s_eta \log(p)n}{N_x}}.$$

Examples

Example (Binary X, smooth mean functions)

 $Y_i = g^*(Z_{i\cdot}) + \varepsilon_i$, where $\varepsilon_i \sim \mathcal{N}(0, \sigma_y^2)$ independently and $X_i \sim \text{Bern}(h^*(Z_{i\cdot}))$ independently. In the Maxway CRT, we take $g(Z_{i\cdot})$ to be an estimate of $g^*(Z_{i\cdot})$ and take $h(Z_{i\cdot})$ to be an estimate of $h^*(Z_{i\cdot})$. Assume g^* is α -smooth, h^* is β -smooth. Estimate the mean functions with a kernel method.

Type-I error inflation of the Maxway CRT $\lesssim \sqrt{n}N_{p}^{-\frac{\gamma}{2\gamma+2}} + nN_{y}^{-\frac{\alpha}{2\alpha+p}}N_{x}^{-\frac{\beta}{2\beta+p}}$.

Type-I error inflation of the Model-X CRT $\lesssim \sqrt{n} N_x^{-\frac{\beta}{2\beta+p}}$.

Semi-supervised Scenario

- Labelled data $\boldsymbol{D} = (\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{Z})$ of sample size n
- ▶ Unlabelled data $\boldsymbol{D}^{u} = (\boldsymbol{x}^{u}, \boldsymbol{Z}^{u}) \rightarrow \text{train } h \text{ and } \rho$
- ▶ How to train g? What if we don't have a external dataset of (y, Z)?
 - Train g on D.
 - Theory cannot be directly applied. Still hope to avoid overfitting.
 - "Cross-fitting". Divide the data D into K fold. Train g on the K 1 folds and evaluate $g(Z_i)$ on the other fold.

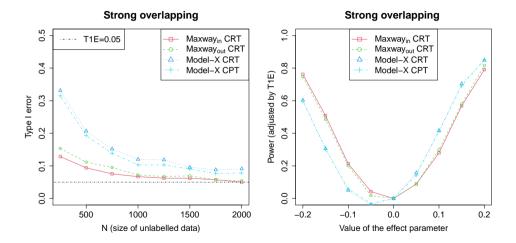
Gaussian Linear Model

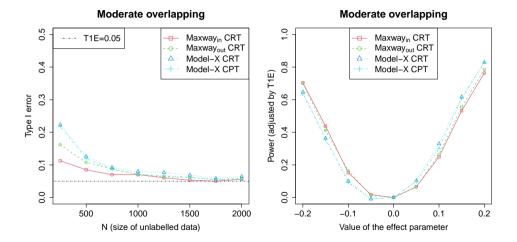
Generate $Z \in \mathbb{R}^p$ from N(**0**, Σ) where p = 500 and $\Sigma = (\sigma_{ij})_{p \times p}$ with $\sigma_{ij} = 0.5^{|i-j|}$. Then generate the conditional gaussian X and Y following:

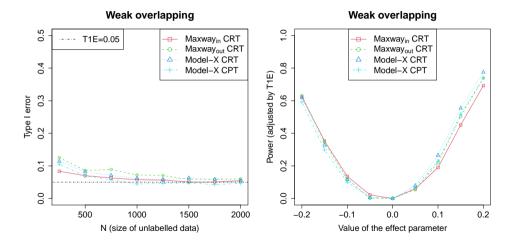
$$X = 0.3\sum_{j=1}^{5}\nu_j Z_j + \eta \sum_{\ell \in \mathcal{I}_1}\nu_\ell Z_\ell + \epsilon_1; \quad Y = \gamma h(X,Z) + 0.3\sum_{j=1}^{5}\nu_j Z_j + \eta \sum_{\ell \in \mathcal{I}_2}\nu_\ell Z_\ell + \epsilon_2,$$

where $\epsilon_1, \epsilon_2 \sim \mathcal{N}(0, 1)$, each ν_j is randomly picked from $\{-1, 1\}$, and $\mathcal{I}_1, \mathcal{I}_2$ are two disjoint sets of indices randomly drawn from $\{6, 7, \ldots, p\}$ satisfying $|\mathcal{I}_1| = |\mathcal{I}_2| = 25$.

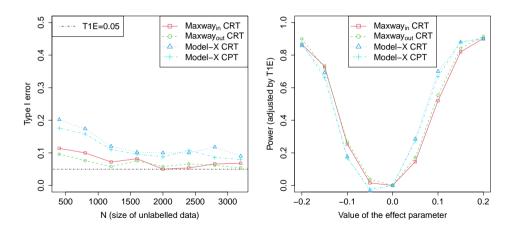
- η : how strong is the confounding? $\eta = 0, 0.1, 0.2$: strong, moderate, weak overlapping/confounding.
- \blacktriangleright $\gamma = 0$: evaluate type I error.
- ▶ $\gamma \neq 0$: power curve.







Simulations: nonlinear model



Real Data Example

- Statins are one of the most commonly used drug in the United States for lowering the level of low-density lipoprotein (LDL) and the risk of cardiovascular disease (CVD).
- Working mechanism: HMGCR inhibition
- Evidences showing that the use of statins could increase the risk for type II diabetes mellitus (DM).

$$\stackrel{?}{\Longrightarrow} \stackrel{\text{DIABETES}}{\longrightarrow}$$

- Unethical/expensive to conduct randomized control trial.
- Statins = absense of certain SNP in HMGCR.
- ► Test whether SNP <u></u> diabetes | other variables—gives a biological perspective

Real Data Example

UK Biobank

Z includes age, gender and genetic variants associated with DM or its related phenotypes including high LDL, high-density lipoprotein (HDL) and BMI.

p-values

Statistic	CRT	СРТ	Maxway CRT
d ₀	0.06	0.06	0.04
d_{I}	0.16	0.18	0.13

Table: The d_0 and $d_I p$ -values for the dependence of the risk of DM on the treatment of statins functionally represented by the variant rs17238484-G.

▶ The Maxway CRT is not generally more conservative than the original Model-X CRT.

Thank you!