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Introduction Backgrounds

Exponential Approximations

Often in applied probability models an intractable random variable of
interest is plausibly approximately exponentially distributed. This can
often be argued by limit theorems, but more convincingly by small error
bounds on the distance (Kolmogorov or total variation), to an
approximating exponential distribution.
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Introduction Backgrounds

Aging Distributions

Frequently in applications the distribution of interest is known to belong to
a class of aging distributions. The mathematical challenge is to obtain
sharp error bounds for that class given the first two moments of the
distribution.

Assume W ≥ 0 is a random variable with EW 2 <∞. The
distribution of W is said to be NWUE (new worse than used in
expectation) if E (W − t|W > t) ≥ EW for all t ≥ 0.

Assume W ≥ 0 is a random variable with EW 2 <∞. The
distribution of W is said to be NBUE (new better than used in
expectation) if E (W − t|W > t) ≤ EW for all t ≥ 0.
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Equilibrium Distribution

Let W be a non-negative random variable with finite first and second
moments. Let F be the distribution function of W . G , the equilibrium
distribution of F , is defined as

Ḡ (x) =
1

EW

∫ ∞
x

F̄ (t) dt,

where Ḡ (x) = 1− G (x) and F̄ (x) = 1− F (x).
Let W ∗ be a random variable with distribution function G .
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Introduction Backgrounds

Equilibrium Distribution

The distribution of W being NWUE is equivalent to Ḡ (x) ≥ F̄ (x).
The distribution of W being NBUE is equivalent to Ḡ (x) ≤ F̄ (x).
Proof(NWUE).

Ḡ (x) =
1

EW

∫ ∞
x

F̄ (t) dt

⇒ Ḡ (x)/F̄ (x) =
1

EW

(∫ ∞
x

F̄ (t) dt /F̄ (x)
)

=
1

EW
E (W − x |W > x) ≥ 1.

W ∼ Exponential ⇒ W ∗ ∼ Exponential.

W and W ∗ have the same distribution ⇒ W ∼ Exponential.
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Introduction The Problem of Interest

The Problem of Interest

Let W be a random variable belonging to the NWUE family. Let E be
a Exponential(1) random variable.

K (W ∗, (EW )E) – Kolmogorov distance between W ∗ and an
exponential distribution with the same mean as W
K (W ∗, (EW ∗)E) – Kolmogorov distance between W ∗ and an
exponential distribution with the same mean as W ∗

The goal is to obtain sharp bounds given the first two moments of the
distribution. For NBUE or NWUE and their subclasses, Keilson(1979)
suggested the scale invariant parameter |ρ|, where

ρ =
EW 2

2(EW )2
− 1 =

µG
µF
− 1.

Hence the bounds obtained should be written as functions of ρ.
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Sharp Bounds on K (W ∗, (EW )E)

Theorem

K (W ∗, (EW )E) ≤ p + q log q,

where
p =

√
ρ2 + 2ρ− ρ,

and q = 1− p. The bound is sharp.

Note that as W ∗ st
≥ (EW )E , one-sided Kolmogorov distance is not an

issue.
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Example – Attaining the Bound

Example

F̄ (x) =

{
1− p if x < p

1−p ,

(1− p) ep/(1−p)−x if x ≥ p
1−p .
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Idea Behind the Proof

Let g(x) = Ḡ (x)− e−x . W follows an NWUE distribution implies that
g(x) ≥ 0, and that, ∫ ∞

0
g(x)dx = ρ.
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Sharp Bounds on K+(W ∗, (EW ∗)E)

Theorem

K+(W ∗, (EW ∗)E) = sup
t

[
Ḡ (t)− e−t/EW

∗] ≤ p∗ + q∗ log q∗,

where q∗ = q(1 + ρ) and p∗ = 1− q∗. The bound is sharp.

If W is not exponentially distributed, then p∗ < p and the bound is
smaller than p + q log q, i.e. the sharp bound for K (W ∗, (EW )E).

For example if ρ = 0.1, then p + q log q = 0.0736, while
p∗ + q∗ log q∗ = 0.0482.

The example in the previous section also attains the bound here.
⇒ The bound is sharp.
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Sharp Bounds on K−(W ∗, (EW ∗)E)

Theorem

K−(W ∗, (EW ∗)E) = sup
t

[
e−t/EW

∗ − Ḡ (t)
]
≤ ρ

1 + ρ

( 1

ρ+ 1

)1/ρ
.

The bound is sharp.

Proof.

For K−, since Ḡ (x) ≥ e−x ,

K− = sup
x
{e−x/(1+ρ)−Ḡ (x)} ≤ sup

x
{e−x/(1+ρ)−e−x} =

( ρ

1 + ρ

)( 1

ρ+ 1

) 1
ρ .
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Main Results Sharp Bounds on K(W∗, (EW∗)E)

Example – Attaining the Bounds on K−(W ∗, (EW ∗)E)

Example

Figure: Example – Attaining the Bound
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Combine the Results – Sharp Bounds on K (W ∗, (EW ∗)E)

Theorem

K (W ∗, (EW ∗)E) ≤ max
(
p∗ + q∗ log q∗,

ρ

ρ+ 1

( 1

ρ+ 1

)1/ρ)
=

p∗ + q∗ log q∗ if ρ ≤ c ,

ρ
ρ+1

(
1
ρ+1

)1/ρ
if ρ > c ,

where c ≈ 0.245018. The bound is sharp.

For any ρ > 0, the bound is strictly smaller than the bound for
K (W ∗, (EW )E).
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Applications and Discussions Applications

Applications

Geometric Convolutions.
Let {Xi}i≥0 be an i.i.d sequence of non-negative random variables
with finite mean ν1 and finite second moment ν2. Let θ be in (0, 1).
Let N follow a geometric distribution and be independent of the
sequence with P(N = k) = (1− θ)kθ, k ∈ Z, k ≥ 0.

Y =
N∑
i=1

Xi

is called a geometric convolution.
Brown (1990) showed that Y is NWU, and as Y has a finite mean, Y
is NWUE.

First Passage Times.
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Applications and Discussions Discussions

Comparison of Bounds – Bounded Hazard Rate

Brown (2015) considered sharp bounds for exponential approximations
under a hazard rate upper bound. As W here has an NWUE distribution,
the hazard rate of W ∗ is bounded above by 1. Hence by Brown’s results,

K (W ∗, E) ≤ 1− e−ρ, and K (W ∗, (1 + ρ)E) ≤ 1− e−
ρ

1+ρ for ρ small.

Bound for K (W ∗, E) Bound for K (W ∗, (1 + ρ)E)

ρ q log q + p 1− e−ρ 1− µq + µq log(µq) 1− e−
ρ

1+ρ

0.005 0.0047 0.0050 0.0042 0.0050
0.01 0.0091 0.0100 0.0079 0.0099
0.02 0.0175 0.0198 0.0144 0.0194
0.05 0.0403 0.0488 0.0297 0.0465
0.1 0.0738 0.0952 0.0482 0.0869
0.2 0.1293 0.1813 0.0726 0.1535

Table: Comparison of Bounds
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Lower Bounds

There are no positive lower bounds for either K (W ∗,E (W )E) or
K (W ∗,E (W ∗)E).

For K (W ∗,E (W ∗)E), if F̄ (t) = 1
ρ+1e

−t/(ρ+1), then W ∗ ∼ (1 + ρ)E
and K (W ∗, (1 + ρ)E) = 0.

For K (W ∗,E (W )E), for any ρ and ε > 0, define,

F̄ (t) =

{
e−t , 0 ≤ t < T ,

e−T (qe−q(t−T )) = qe−pT e−qt , t ≥ T ,

where q is chosen to be 1
1+ρeT

and T to be log(1ε ).

⇒ K (W ∗,E (W )E) < ε.
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Summary

Summary

Limit theorems and error bounds are frequently proved for exponential
approximations. Aging distributions are often of interest. Equilibrium
distributions are closely related to exponential approximations and
aging distributions.

Sharp upper bounds are obtained on K (W ∗,E (W )E) and
K (W ∗,E (W ∗)E)

The results (sharp bounds) can be applied to geometric convolutions
and first passage times.

There are no positive lower bounds for either K (W ∗,E (W )E) or
K (W ∗,E (W ∗)E).
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