Sharp Bounds for Exponential Approximations of NWUE Distributions

Mark Brown ¹ Shuangning Li ²

¹Department of Statistics Columbia University

²Department of Statistics and Actuarial Science University of Hong Kong

June, 2017

Introduction

- Backgrounds
- The Problem of Interest

Dain Results

- Sharp Bounds on $K(W^*, (EW)\mathcal{E})$
- Sharp Bounds on $K(W^*, (EW^*)\mathcal{E})$
- 3 Applications and Discussions
 - Applications
 - Discussions

Introduction

- Backgrounds
- The Problem of Interest

Main Results

- Sharp Bounds on $K(W^*, (EW)\mathcal{E})$
- Sharp Bounds on $K(W^*, (EW^*)\mathcal{E})$
- 3 Applications and Discussions
 - Applications
 - Discussions

Exponential Approximations

Often in applied probability models an intractable random variable of interest is plausibly approximately exponentially distributed. This can often be argued by **limit theorems**, but more convincingly by small **error bounds** on the distance (Kolmogorov or total variation), to an approximating exponential distribution.

Aging Distributions

Frequently in applications the distribution of interest is known to belong to a class of aging distributions. The mathematical challenge is to obtain sharp error bounds for that class given the first two moments of the distribution.

- Assume W ≥ 0 is a random variable with EW² < ∞. The distribution of W is said to be NWUE (new worse than used in expectation) if E(W t|W > t) ≥ EW for all t ≥ 0.
- Assume W ≥ 0 is a random variable with EW² < ∞. The distribution of W is said to be NBUE (new better than used in expectation) if E(W t|W > t) ≤ EW for all t ≥ 0.

Backgrounds

Equilibrium Distribution

Let W be a non-negative random variable with finite first and second moments. Let F be the distribution function of W. G, the equilibrium distribution of F, is defined as

$$ar{G}(x)=rac{1}{EW}\int_x^\inftyar{F}(t)\ dt,$$

where $\bar{G}(x) = 1 - G(x)$ and $\bar{F}(x) = 1 - F(x)$. Let W^* be a random variable with distribution function G.

Equilibrium Distribution

• The distribution of W being NWUE is equivalent to $\overline{G}(x) \ge \overline{F}(x)$. The distribution of W being NBUE is equivalent to $\overline{G}(x) \le \overline{F}(x)$. *Proof(NWUE)*.

$$ar{G}(x) = rac{1}{EW} \int_x^\infty ar{F}(t) \ dt$$

$$\Rightarrow \bar{G}(x)/\bar{F}(x) = \frac{1}{EW} \left(\int_{x}^{\infty} \bar{F}(t) dt / \bar{F}(x) \right)$$
$$= \frac{1}{EW} E(W - x|W > x) \ge 1.$$

• $W \sim \text{Exponential} \Rightarrow W^* \sim \text{Exponential}.$

• W and W^* have the same distribution $\Rightarrow W \sim \mathsf{Exponential}$.

Introduction

- Backgrounds
- The Problem of Interest

Diain Results

- Sharp Bounds on $K(W^*, (EW)\mathcal{E})$
- Sharp Bounds on $K(W^*, (EW^*)\mathcal{E})$
- Applications and Discussions
 - Applications
 - Discussions

The Problem of Interest

- Let W be a random variable belonging to the NWUE family. Let \mathcal{E} be a Exponential(1) random variable.
- K(W*, (EW)E) Kolmogorov distance between W* and an exponential distribution with the same mean as W
 K(W*, (EW*)E) Kolmogorov distance between W* and an exponential distribution with the same mean as W*
- The goal is to obtain sharp bounds given the first two moments of the distribution. For NBUE or NWUE and their subclasses, Keilson(1979) suggested the scale invariant parameter $|\rho|$, where

$$ho = rac{EW^2}{2(EW)^2} - 1 = rac{\mu_G}{\mu_F} - 1.$$

Hence the bounds obtained should be written as functions of ρ .

Introduction

- Backgrounds
- The Problem of Interest

2 Main Results

- Sharp Bounds on $K(W^*, (EW)\mathcal{E})$
- Sharp Bounds on $K(W^*, (EW^*)\mathcal{E})$
- Applications and Discussions
 - Applications
 - Discussions

Sharp Bounds on $K(W^*, (EW)\mathcal{E})$

Theorem

$$K(W^*, (EW)\mathcal{E}) \leq p + q \log q,$$

where

$$p = \sqrt{\rho^2 + 2\rho} - \rho,$$

and q = 1 - p. The bound is sharp.

• Note that as $W^* \stackrel{st}{\geq} (EW)\mathcal{E}$, one-sided Kolmogorov distance is not an issue.

Example – Attaining the Bound

Example

M. Brown S. Li

Sharp Bounds for Exponential Approximations of NWUE Distributions

Idea Behind the Proof

Let $g(x) = \overline{G}(x) - e^{-x}$. *W* follows an NWUE distribution implies that $g(x) \ge 0$, and that,

Introduction

- Backgrounds
- The Problem of Interest

Main Results

- Sharp Bounds on $K(W^*, (EW)\mathcal{E})$
- Sharp Bounds on $K(W^*, (EW^*)\mathcal{E})$
- 3 Applications and Discussions
 - Applications
 - Discussions

Sharp Bounds on $K^+(W^*, (EW^*)\mathcal{E})$

Theorem

$$\mathcal{K}^+(W^*,(EW^*)\mathcal{E}) = \sup_t \left[ar{G}(t) - e^{-t/EW^*}
ight] \leq p^* + q^*\log q^*,$$

where $q^* = q(1 + \rho)$ and $p^* = 1 - q^*$. The bound is sharp.

- If W is not exponentially distributed, then p* smaller than p + q log q, i.e. the sharp bound for K(W*, (EW)E).
- For example if $\rho = 0.1$, then $p + q \log q = 0.0736$, while $p^* + q^* \log q^* = 0.0482$.
- The example in the previous section also attains the bound here.
 ⇒ The bound is sharp.

Sharp Bounds on $K^-(W^*, (EW^*)\mathcal{E})$

Theorem

$$\mathcal{K}^-(\mathcal{W}^*,(\mathcal{EW}^*)\mathcal{E}) = \sup_t \left[e^{-t/\mathcal{EW}^*} - ar{G}(t)
ight] \leq rac{
ho}{1+
ho} \Big(rac{1}{
ho+1}\Big)^{1/
ho}$$

The bound is sharp.

Proof.

For
$$K^-$$
, since $\bar{G}(x) \ge e^{-x}$,

$$\mathcal{K}^{-} = \sup_{x} \{ e^{-x/(1+\rho)} - \bar{G}(x) \} \le \sup_{x} \{ e^{-x/(1+\rho)} - e^{-x} \} = \left(\frac{\rho}{1+\rho} \right) \left(\frac{1}{\rho+1} \right)^{\frac{1}{\rho}}.$$

Example – Attaining the Bounds on $K^-(W^*, (EW^*)\mathcal{E})$

Combine the Results – Sharp Bounds on $K(W^*, (EW^*)\mathcal{E})$

Theorem

$$egin{aligned} \mathcal{K}(W^*,(EW^*)\mathcal{E}) &\leq \max\left(p^*+q^*\log q^*,rac{
ho}{
ho+1}\Big(rac{1}{
ho+1}\Big)^{1/
ho}
ight) \ &= egin{cases} p^*+q^*\log q^* & ext{if }
ho &\leq c, \ rac{
ho}{
ho+1}\Big(rac{1}{
ho+1}\Big)^{1/
ho} & ext{if }
ho &> c, \end{aligned}$$

where $c \approx 0.245018$. The bound is sharp.

 For any ρ > 0, the bound is strictly smaller than the bound for K(W*, (EW)ε).

Introduction

- Backgrounds
- The Problem of Interest

2 Main Results

- Sharp Bounds on $K(W^*, (EW)\mathcal{E})$
- Sharp Bounds on $K(W^*, (EW^*)\mathcal{E})$

3 Applications and Discussions

- Applications
- Discussions

Applications

• Geometric Convolutions.

Let $\{X_i\}_{i\geq 0}$ be an i.i.d sequence of non-negative random variables with finite mean ν_1 and finite second moment ν_2 . Let θ be in (0, 1). Let N follow a geometric distribution and be independent of the sequence with $P(N = k) = (1 - \theta)^k \theta$, $k \in \mathbb{Z}, k \geq 0$.

$$Y = \sum_{i=1}^{N} X_i$$

is called a geometric convolution.

Brown (1990) showed that Y is NWU, and as Y has a finite mean, Y is NWUE.

• First Passage Times.

Introduction

- Backgrounds
- The Problem of Interest

2 Main Results

- Sharp Bounds on $K(W^*, (EW)\mathcal{E})$
- Sharp Bounds on $K(W^*, (EW^*)\mathcal{E})$

3 Applications and Discussions

- Applications
- Discussions

Discussions

Comparison of Bounds – Bounded Hazard Rate

Brown (2015) considered sharp bounds for exponential approximations under a hazard rate upper bound. As W here has an NWUE distribution, the hazard rate of W^* is bounded above by 1. Hence by Brown's results, $K(W^*, \mathcal{E}) \le 1 - e^{-\rho}$, and $K(W^*, (1 + \rho)\mathcal{E}) \le 1 - e^{-\frac{\rho}{1+\rho}}$ for ρ small.

	Bound for $K(W^*, \mathcal{E})$		Bound for $K(W^*, (1+ ho)\mathcal{E})$	
ρ	$q \log q + p$	$1 - e^{- ho}$	$1 - \mu q + \mu q \log(\mu q)$	$1-e^{-rac{ ho}{1+ ho}}$
0.005	0.0047	0.0050	0.0042	0.0050
0.01	0.0091	0.0100	0.0079	0.0099
0.02	0.0175	0.0198	0.0144	0.0194
0.05	0.0403	0.0488	0.0297	0.0465
0.1	0.0738	0.0952	0.0482	0.0869
0.2	0.1293	0.1813	0.0726	0.1535

Table: Comparison of Bounds

Lower Bounds

- There are no positive lower bounds for either K(W*, E(W)E) or K(W*, E(W*)E).
- For $K(W^*, E(W^*)\mathcal{E})$, if $\overline{F}(t) = \frac{1}{\rho+1}e^{-t/(\rho+1)}$, then $W^* \sim (1+\rho)\mathcal{E}$ and $K(W^*, (1+\rho)\mathcal{E}) = 0$.
- For $K(W^*, E(W)\mathcal{E})$, for any ρ and $\epsilon > 0$, define,

$$ar{F}(t) = egin{cases} e^{-t}, \ 0 \leq t < T, \ e^{-T}(qe^{-q(t-T)}) = qe^{-pT}e^{-qt}, \ t \geq T, \end{cases}$$

where q is chosen to be $\frac{1}{1+\rho e^T}$ and T to be $\log(\frac{1}{\epsilon})$. $\Rightarrow \mathcal{K}(W^*, \mathcal{E}(W)\mathcal{E}) < \epsilon$.

Summary

- Limit theorems and error bounds are frequently proved for exponential approximations. Aging distributions are often of interest. Equilibrium distributions are closely related to exponential approximations and aging distributions.
- Sharp upper bounds are obtained on K(W*, E(W)E) and K(W*, E(W*)E)
- The results (sharp bounds) can be applied to geometric convolutions and first passage times.
- There are no positive lower bounds for either K(W*, E(W)E) or K(W*, E(W*)E).

References

References I

- Aldous, D. J., & Brown, M. (1992). Inequalities for rare events in time-reversible Markov chains I. *Lecture Notes-Monograph Series*, 1-16.
- Aldous, D. J., & Brown, M. (1993). Inequalities for rare events in time-reversible Markov chains II. *Stochastic Processes and their Applications*, 44(1), 15-25.
- Aldous, D., & Fill, J. (2002). Reversible Markov chains and random walks on graphs.
- Brown, M. (1983). Approximating IMRL distributions by exponential distributions, with applications to first passage times. *The annals of probability*, 419-427.
- Brown, M. (1990). Error bounds for exponential approximations of geometric convolutions. *The Annals of Probability*, 1388-1402.

References

References II

- Brown, M. (2015). Sharp bounds for exponential approximations under a hazard rate upper bound. Journal of Applied Probability, 52(3), 841-850.
- Daley, D. J., Kreinin, A. Ya., & Trengove, C. D. (1992). Bounds for mean waiting times in single-server queues: a survey. In Queueing and Related Models (U.N. Bhat and I.V. Basawa (eds.) pp. 177-223.). Clarendon Press, Oxford.
- Daley, D. J. (1988). Tight bounds on the exponential approximation of some aging distributions. The Annals of Probability, 414-423.
- Keilson, J. (2012). Markov chain models rarity and exponentiality (Vol. 28). Springer Science & Business Media.

📎 Klugman, S. A., Panjer, H. H., Willmot, G. E. (2012). Loss models: from data to decisions (Vol. 715). John Wiley & Sons.

References III

- Peköz, E. A., Röllin, A. (2011). New rates for exponential approximation and the theorems of Rényi and Yaglom. *The Annals of Probability*, 587-608.
- Willmot, G. E., Lin, X. S. (2001). Compound geometric and related distributions. In *Lundberg Approximations for Compound Distributions with Insurance Applications* (pp. 107-140). Springer New York.

Thank you!