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Intervention targeting the patient:

❖ Daily reminder

Intervention targeting the relationship:

❖ Weekly prompt for the dyad to play a joint game.

❖ A puzzle-solving game.

❖ The game lasts throughout the week.

❖ Once the adolescent takes the medication, it 

triggers a clue for the parent.

❖ If they win the game, a donation is made to their 

favorite charity.

Smart medication boxes with sensors!
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Notation

State


๏ Weekly state : weekly measurements of the quality of the dyadic relationship.


๏ Daily state : various daily measurements related to adolescents and their parents, 
such as their step count, sleep duration or mood. 

Sweekly
w

Sdaily
t

Action


๏ Weekly action : whether to send the weekly intervention to encourage the 
adolescent and their parents to participate in the joint game.


๏ Daily action : whether to send the daily reminder to the adolescent. 

Aweekly
w

Adaily
t

Reward : whether the adolescent cancer patient takes the medication. Rt
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Let’s focus on the daily state and action temporarily!
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Dyadic RL algorithm


Find a balance between 
variance and bias

Assumes that the impact of 
actions does not extend to 

the following week.



Dyadic RL Algorithm

Week w Week w + 1

Sdaily
w,1 Sdaily

w,2
. . . Sdaily

w,H

Adaily
w,1 Adaily

w,2
. . . Adaily

w,H

Rw,1 Rw,2 . . . Rw,H

Sdaily
w+1,1

Adaily
w+1,1

Rw+1,1

. . .

. . .

. . .

Domain science tells us that:

✓Weeks exhibit similar structures.

✓ There is a high level of noise in state transitions and rewards.

The algorithm makes the assumption that the impact of actions does not extend to the following week.

This assumption is to address the challenge of high noise. 
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Two types of interventions:


❖ Daily reminder


❖ Weekly game prompt

Weekly game prompt is 
expected to impact the dyad 
throughout the entire week.
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Daily action:

★ Finite-horizon problem with 

.

★We choose to use RLSVI 

because of its Bayesian nature. 
➔ Helps with interpretability.

H = 7
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Weekly action:

★ Contextual bandit problem.

★We choose to use Thompson 

Sampling because of its 
Bayesian nature.                   
➔ Helps with interpretability.

Reward?

★ Sum of realized rewards: 

too noisy!

★ Estimate of the -function 

on day 1.

Q



Dyadic RL Algorithm

Theoretically, we establish a regret bound for the dyadic RL algorithm within a tabular setting.


Empirically, we demonstrate the dyadic RL algorithm’s performance through simulation studies 
on both toy scenarios and on a realistic test bed constructed from data collected in a mobile 
health study.



Simulation Test Bed
Total Reward(baseline) - Total Reward(Dyadic RL): green means dyadic RL is performing better
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Simulation Test Bed

More likely to disengage when 
receiving too many messages

More likely to feel burdened when 
receiving too many messages

Bandit algorithm
 Full RL algorithm


Total Reward(baseline) - Total Reward(Dyadic RL): green means dyadic RL is performing better
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