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A/B Testing

> A/B testing has been adopted by the technology industry to guide product development
and make business decisions.
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A /B Testing with Increasing Allocation

» Dynamic phase release framework: a new treatment (such as a new product feature) is
gradually released to an increasing number of units in the target population through a

sequence of randomized experiments.
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Difference in Mean Estimator

» 7 = Average(treatment group) -
Average(control group)

» Under Stable Unit Treatment Value
Assumption (SUTVA), 7 shouldn’t change
much when we increase the treatment
probability.

» But sometimes we see this:
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Difference in Mean Estimator

» What happens?

— Randomness?
— Interference?

» Interference examples:

— Marketplace cannibalization (decreasing)
— Social network (increasing)

» What to do in practice?

— Need a formal statistical way to “decide”
whether interference exists.
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Sequential A/B testing

Our Contribution

No interference [Standard statistical analysis]

—:=

Interference exists

Filter

Cluster randomized trials
Budget-split platform

Platforms that carefully deal
with interference



Our Contribution
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No interference [Standard statistical analysis]
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D Cluster randomized trials
K Filter Budget-split platform

Sequential A/B testing

* Scalable, parallelable, “almost for free!” Platforms that carefully deal
* Agnostic to interference mechanism with interference



Permutation Test

» We develop methods that test for the null hypothesis that there is no cross-unit

interference.

» We consider permutation tests:

Compute test statistics

Obtain p-value
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Two permutation tests

General assumption
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» No modeling assumption

» Need to construct graph: helps understand
the underlying interference mechanism

Time fixed effect assumption
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» Low computational complexity
» No need to construct graph

» More powerful
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Problem Setup

» There are K experiments on a population of n units.

» Let 7, be the marginal treatment probability of the k" experiment with
T <T < - < TK.
» For each experiment k € {1,..., K} and each unit i € {1,...,n}, let

Wi 1= treatment of unit / assigned in the k™ experiment € {0,1},

Y; x := outcome of unit i in the k™ experiment € R.

» Let X; € R? be the observed covariates of unit i that do not change over the course of the
experiments.
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Problem Setup

» In the first experiment, each unit i is randomly assigned a treatment W, 1, where
W; 1 ~ Bernoulli(;) independently. (1)

» In the subsequent experiments, conditioning on the previous treatments, each W  is
sampled from the following distribution independently:

VVI'-,k ~ Bernoulli ((ﬂ'k - 7Tk_1)/(1 - 7Tk_1)), if VV,"k_l = 0;
Wik=1, ifW_1=1L1

» This formulation guarantees that if we look at the kth experiment alone, then the
treatments W, «'s are i.i.d. Bernoulli(mg).
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Hypothesis

No cross-unit interference hypothesis |
J

Yik(Win1:k) = Yik(Win1:k) if Wik = Wik

» The hypothesis states that the outcomes of unit i/ depend only on the treatments of unit /
and not on the treatments of others.
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Testing under General Assumptions

» Candidate Exposure: captures the potential form of interference.
» Social network setting: number of friends treated, proportion of friends being treated.
» Marketplace setting: number of treated competitors.

» We denote the candidate exposure by H; k.
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Testing under General Assumptions

Algorithm 1 Testing for interference effect (one experiment).

1. Randomly split the data into two folds: focal units and auxiliary units.

2. Run a linear regression of Yio. ~ Wioe + Xtoc + Htoc, €xtract the coefficient of
Hi,, and take the test statistic T to be the absolute value of the
coefficient.

3. Forb=1,...B:

Regenerate treatments for auxiliary units.

Recompute the candidate exposure H for focal units.

Recompute the test statistic: 7®) with the newly generated H.
End For

Output: The p-value
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Athey et al. [2018]



Testing under General Assumptions

— Focal — — Focal —
rControl
Utilize two experiments?
» Choice of focal units Permute
. . Rows
» Permutation instead of Units Auxiliary Auxiliary
regenerating

> Use Yi> — Y;1 to reduce variance
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Testing with a Time Fixed Effect Model

» The method on the previous slides essentially contrasts different units based on their
values of H;. Some units possess higher values of H;, while others have lower values.

» Can we contrast units at different times instead?

» Need additional assumptions!

'_[ Assumption (No temporal interference) |

Yik(Win1:k) = Yik(Win1:k) if Wiink = Wien k.

’_[ Assumption (Time fixed effect) |

Yik(win) = ai(wan) + uk + €k (wa:n).
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Testing with a Time Fixed Effect Model

Hypothesis’
Yi k(Wi k) = ai(wi k) + uk + € k(Wi k). ]

» Two units i and j: i has been in the treatment group the whole time, while j has been in
the control group the whole time.
» Under Hypothesis’,

— For the first experiment,

Yii— Y1 = (@i(1) + u1 + €,1(1)) — (a;(0) + 1 + €,1(0)) = (1) — ;(0) +€i,1(1) — €;,1(0).
— For the second experiment,

Yie— Y2 = (ai(1) + 2 + €:2(1)) = (;(0) + w1 + €;,1(0)) = ai(1) — ;(0) +€i,2(1) — €;,2(0).

= Yii— Y1 = ai(1) = aj(0) +e1(1) — €,1(0) £ ai(1) — aj(0) +€12(1) — 2(0) = Yz — Y.

= Yi1— Yj1and Yi> — Y2 have the same distribution under Hypothesis'!
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Testing with a Time Fixed Effect Model

Hypothesis’

Yi k(Wi k) = ai(wi k) + uk + € k(Wi k). ]

» Two units i and j: i has been in the treatment group the whole time, while j has been in
the control group the whole time.

» Under alternative hypothesis,

— Consider a simple alternative model:

Yik = WikHix + €ix,
where H; x is the fraction of neighbors of unit i treated in experiment k.
- Yi1—Yii=Hi+e1—¢€1and Yio—Yjo=Hi>+e€2—¢€jo.

— When the number of neighbors of unit i is large, by law of large numbers, we have H; 1 ~ m
and H,‘,g .

= Yi1— Yj1and Yi> — Y] are different!
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Testing with a Time Fixed Effect Model

Algorithm 3 Testing for interference effect (two experiments, time fixed effect
model).

1. LetIo—{Z 11—W12—0}and11—{2 Zl—vVvi’Q:].}.

2. For each ¢ in Zj, match an index j € Zy to ¢ (with no repeat)

3. For each k G {1,2}, compute Yf‘llii = (Yip— Ym(i),k) . Compute a test

statistic 7 |mean(YIdl‘H) mean(Yfﬁ)L
4. Forb=1,...B:
For each 1 €1y:
Randomly permute outcomes across experiments.

End For B
Recompute YId uz( ) = (YZSZ)

1€y

v (®)
— Yo wienr-
Recompute the test statistic: 7).
End For

Output: The p-value
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Testing with a Time Fixed Effect Model
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Testing with a Time Fixed Effect Model

" Difference-in-differences” test
statistic: formalizes the intuition
of our motivating example.

Incorporate covariates.

Matching: help reduce variance.
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Units

Extension to three or more experiments
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Units

Extension to three or more experiments
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» "Vertical Permutation”

Simulations

Outcome model: nonlinear

correlation statistic

regression statistic
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» "Vertical Permutation” vs "Horizontal Permutation’

Simulations

Outcome model: nonlinear

covariate-based matching random matching
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Simulations

» Why is "Horizontal Permutation” more powerful than " Vertical Permutation”?

» Due to the nature of A/B tests, there is more variability in treatment allocation across
experiments than across units.

» For example, assume that all units have around n,g, neighbors in the social network.
Looking at the fraction of neighbors in the treatment group, we find that the variation of
this quantity across units is of scale 1/, /nngp, whereas the variation of this quantity across
experiments is of constant scale.

— By permuting over data points that are more different, " Horizontal Permutation” gains extra
power.
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Applications

» As an illustration, we test the method on a setting where we believe interference exists.

» Treatment: a new feature that improves the quality of LinkedIln members’ attribute for ads
targeting.
» Members as the randomization units.

» Interference effect is expected in these experiments:

— When the allocation percentage is small, only a small set of members have the updated
attributes, making them easier to be targeted by ad campaigns. Thus, when comparing
metrics such as total ad impressions, these members tend to have larger average results than
members in the control group.

— When the treatment allocation increases, more members get the improved attributes. Since
the total ad budget does not increase much, the average difference between treatment and
control units becomes smaller.
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Applications

» Horizontal permutation with 10% and 25% iterations.

Metric 1: p-value = 0.002 Metric 2: p-value = 0.027
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Thank you!
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