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A/B Testing

I A/B testing has been adopted by the technology industry to guide product development
and make business decisions.
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A/B Testing with Increasing Allocation

I Dynamic phase release framework: a new treatment (such as a new product feature) is
gradually released to an increasing number of units in the target population through a
sequence of randomized experiments.
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Difference in Mean Estimator

I τ̂ = Average(treatment group) -
Average(control group)

I Under Stable Unit Treatment Value
Assumption (SUTVA), τ̂ shouldn’t change
much when we increase the treatment
probability.

I But sometimes we see this:

I τ̂ decreases with treatment probability!
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Difference in Mean Estimator

I What happens?

– Randomness?
– Interference?

I Interference examples:

– Marketplace cannibalization (decreasing)
– Social network (increasing)

I What to do in practice?

– Need a formal statistical way to “decide”
whether interference exists.
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Our Contribution
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Our Contribution
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Permutation Test

I We develop methods that test for the null hypothesis that there is no cross-unit
interference.

I We consider permutation tests:
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Two permutation tests

General assumption

Treatment

Control Focal

Auxiliary

Permute
Rows

Experiments/Time

Units

I No modeling assumption

I Need to construct graph: helps understand
the underlying interference mechanism

Time fixed effect assumption

Treatment

Control

Units

Experiments/Time

Match units
Permute
“Horizontally”

Matched
pairs

I Low computational complexity

I No need to construct graph

I More powerful 10



Problem Setup

I There are K experiments on a population of n units.

I Let πk be the marginal treatment probability of the k th experiment with

π1 < π2 < · · · < πK .

I For each experiment k ∈ {1, . . . ,K} and each unit i ∈ {1, . . . , n}, let

Wi,k := treatment of unit i assigned in the k th experiment ∈ {0, 1} ,
Yi,k := outcome of unit i in the k th experiment ∈ R.

I Let Xi ∈ Rd be the observed covariates of unit i that do not change over the course of the
experiments.
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Problem Setup

I In the first experiment, each unit i is randomly assigned a treatment Wi,1, where

Wi,1 ∼ Bernoulli(π1) independently. (1)

I In the subsequent experiments, conditioning on the previous treatments, each Wi,k is
sampled from the following distribution independently:{

Wi,k ∼ Bernoulli ((πk − πk−1)/(1− πk−1)) , if Wi,k−1 = 0;

Wi,k = 1, if Wi,k−1 = 1.
(2)

I This formulation guarantees that if we look at the k th experiment alone, then the
treatments Wi,k ’s are i.i.d. Bernoulli(πk).
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Hypothesis

No cross-unit interference hypothesis

Yi,k(w1:n,1:K ) = Yi,k(w̃1:n,1:K ) if wi,1:K = w̃i,1:K .

I The hypothesis states that the outcomes of unit i depend only on the treatments of unit i
and not on the treatments of others.
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Testing under General Assumptions

I Candidate Exposure: captures the potential form of interference.

I Social network setting: number of friends treated, proportion of friends being treated.

I Marketplace setting: number of treated competitors.

I We denote the candidate exposure by Hi,k .
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Testing under General Assumptions

Athey et al. [2018]
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Testing under General Assumptions

Utilize two experiments?

I Choice of focal units

I Permutation instead of
regenerating

I Use Yi,2−Yi,1 to reduce variance

Treatment

Control

Units

Experiments/Time

Permute
Rows

Focal Focal

Auxiliary Auxiliary
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Testing with a Time Fixed Effect Model

I The method on the previous slides essentially contrasts different units based on their
values of Hi . Some units possess higher values of Hi , while others have lower values.

I Can we contrast units at different times instead?

I Need additional assumptions!

Assumption (No temporal interference)

Yi,k(w1:n,1:K ) = Yi,k(w̃1:n,1:K ) if w1:n,k = w̃1:n,k .

Assumption (Time fixed effect)

Yi,k(w1:n) = αi (w1:n) + uk + εi,k(w1:n).
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Testing with a Time Fixed Effect Model

Hypothesis’

Yi,k(wi,k) = αi (wi,k) + uk + εi,k(wi,k).

I Two units i and j : i has been in the treatment group the whole time, while j has been in
the control group the whole time.

I Under Hypothesis’,
– For the first experiment,

Yi,1−Yj,1 = (αi (1) + u1 + εi,1(1))− (αj(0) + u1 + εj,1(0)) = αi (1)−αj(0) + εi,1(1)− εj,1(0).
– For the second experiment,

Yi,2−Yj,2 = (αi (1) + u2 + εi,2(1))− (αj(0) + u1 + εj,1(0)) = αi (1)−αj(0) + εi,2(1)− εj,2(0).

⇒ Yi,1−Yj,1 = αi (1)−αj(0)+εi,1(1)−εj,1(0)
d
= αi (1)−αj(0)+εi,2(1)−εj,2(0) = Yi,2−Yj,2.

– Yi,1 − Yj,1 and Yi,2 − Yj,2 have the same distribution under Hypothesis’ !
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Testing with a Time Fixed Effect Model

Hypothesis’

Yi,k(wi,k) = αi (wi,k) + uk + εi,k(wi,k).

I Two units i and j : i has been in the treatment group the whole time, while j has been in
the control group the whole time.

I Under alternative hypothesis,
– Consider a simple alternative model:

Yi,k = Wi,kHi,k + εi,k ,

where Hi,k is the fraction of neighbors of unit i treated in experiment k.
– Yi,1 − Yj,1 = Hi,1 + εi,1 − εj,1 and Yi,2 − Yj,2 = Hi,2 + εi,2 − εj,2.
– When the number of neighbors of unit i is large, by law of large numbers, we have Hi,1 ≈ π1

and Hi,2 ≈ π2.
– Yi,1 − Yj,1 and Yi,2 − Yj,2 are different!
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Testing with a Time Fixed Effect Model
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Testing with a Time Fixed Effect Model

Treatment

Control

Units

Experiments/Time

Match units
Permute
“Horizontally”
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Testing with a Time Fixed Effect Model

I ”Difference-in-differences” test
statistic: formalizes the intuition
of our motivating example.

I Incorporate covariates.

I Matching: help reduce variance.

Treatment

Control
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Extension to three or more experiments

Treatment
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Extension to three or more experiments
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Simulations

I ”Vertical Permutation”
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Simulations

I ”Vertical Permutation” vs ”Horizontal Permutation”
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Simulations

I Why is ”Horizontal Permutation” more powerful than ”Vertical Permutation”?

I Due to the nature of A/B tests, there is more variability in treatment allocation across
experiments than across units.

I For example, assume that all units have around nngb neighbors in the social network.
Looking at the fraction of neighbors in the treatment group, we find that the variation of
this quantity across units is of scale 1/

√
nngb, whereas the variation of this quantity across

experiments is of constant scale.

– By permuting over data points that are more different, ”Horizontal Permutation” gains extra
power.
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Applications

I As an illustration, we test the method on a setting where we believe interference exists.

I Treatment: a new feature that improves the quality of LinkedIn members’ attribute for ads
targeting.

I Members as the randomization units.

I Interference effect is expected in these experiments:

– When the allocation percentage is small, only a small set of members have the updated
attributes, making them easier to be targeted by ad campaigns. Thus, when comparing
metrics such as total ad impressions, these members tend to have larger average results than
members in the control group.

– When the treatment allocation increases, more members get the improved attributes. Since
the total ad budget does not increase much, the average difference between treatment and
control units becomes smaller.

28



Applications

I Horizontal permutation with 10% and 25% iterations.
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Thank you!
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